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Chapter 1: Introduction

CHAPTER

ONE

INTRODUCTION

In many practical problems one has to determine some model parameters from observed
data. Whereas the forward problem to predict the data given the model parameters is
in the most cases well-understood and stable solvable, the inverse problem to determine
the parameters from usually noisy data is often instable and much less is known. Mathe-
matically, this fact is described by the notion of well- and ill-posedness due to HADAMARD

[Had52]: A problem is called well-posed, if

(a) a solution exists,

(b) the solution is unique and

(c) the solution depends continuously on the data.

If any of these conditions is violated, the problem is called ill-posed. Since in all applica-
tions the data will be measured only up to some noise, condition (c) is the most delicate
one: If the solution does not depend continuously on the data and the data is erroneous,
any ad hoc reconstruction must considered to be useless.
Let us assume that the problem under consideration can be formulated as an operator
equation

F (u) = g (I)

where g are the data, u the unknown parameters and the operator F describes the (pos-
sibly nonlinear) dependence of both. Considering the conditions (a)-(c) from above, the
problem (I) is well-posed if and only if

(a) the operator is surjective,

(b) the operator is injective and

(c) the operator is continuously invertible.

This work is mainly concerned with applications from photonic imaging, where the ob-
served data corresponds to counts of photons which have interacted with an unknown
object u† of interest and the aim is to reconstruct as much information as possible about
u†. Due to fundamental physical and mathematical reasons, photon count data is Poisson
distributed as we will see in Chapter 2. Hence, the observed data is not corrupted by de-
terministic noise but given by a stochastic process, namely a Poisson process Gt. Roughly
spoken one observes a random set of points (corresponding to the photon detections)
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with a special structure (this will also be clarified in Chapter 2) and tries to reconstruct
the underlying reason which causes the true photon density. The additional parameter t
denotes the exposure time of the measurement procedure and is proportional to the total
number of photon counts. As t → ∞ we expect the normalized data 1

t Gt to tend to the
true photon density g† = F

(
u†) in a suitable sense. This is shown exemplarily in Figure

1.1.
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(a) true photon density g†
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(b) normalized Poisson data for t = 104
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(c) normalized Poisson data for t = 105

−8
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(d) normalized Poisson data for t = 106

Figure 1.1: Logarithmic plots of the true photon density g† and normalized Poisson data
1
t Gt for different values of t. The color values have been chosen such that
regions without photon counts are white to illustrate the sparsity of the data.

Photonic imaging includes examples like Positron Emission Tomography, coherent X-ray
imaging, astronomical imaging and fluorescence microscopy. In all these applications the
parameter t is limited due to various reasons:

• In Positron emission tomography a large t corresponds to a stronger source of radi-
ation inside the patient and causes hence more harm.

• In coherent X-ray and astronomical imaging the observation time is limited.

• In fluorescence microscopy t is limited due to the effect of photobleaching.

Moreover, a long observation time may always cause motion artifacts. The parameter t
has different physical meanings in all aforementioned examples, but for simplicity we
will call it observation time in the following. As per description one is interested in recon-
structing u also for small t which corresponds to very few photon counts as shown in
Figure 1.1, subplot (b). Especially in those cases the information about the data distribu-
tion must be incorporated into the reconstruction procedure.
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Chapter 1: Introduction

It seems to be a promising approach to seek approximations uapp of u† as

uapp ∈ argmax
u

P
(
Gt
∣∣the true intensity is F (u)

)
, (II)

i.e. to choose uapp such that it maximizes the probability to observe Gt. The ansatz (II) is
called maximum-likelihood approach and is widely used to gain estimators for distribution
characteristics. Replacing the term P

(
Gt
∣∣the true intensity is F (u)

)
in (II) by its nega-

tive logarithm and substituting argmax by argmin does not change uapp, and hence we
will denote

S (F (u) ; Gt) := − ln
(
P
(
Gt
∣∣the true intensity is F (u)

))
in the following. This shortens the notation and allows us to analyze the approach (II) in
a more general setup. Moreover, S will include the parameter t to ensure a proper scaling
of the problem. For our example of Poisson data, the functional S is convex in its first
argument, which simplifies the minimization of S .
Unfortunately, the ill-posedness of (I) carries over to (II) in the sense that if F is not con-
tinuously invertible, then also uapp does in general not depend continuously on the data.
To overcome this problem, one adds a weighted penalty term R to the functional and
approximates u† by

uα ∈ argmin
u

[S (F (u) ; Gt) + αR (u)] . (III)

The additional termR usually includes a priori knowledge about u† (it might for example
be known from physics that u† is smooth) and should enforce uα not to oscillate too much.
Regrettably, the approach (III) needs an additional regularization parameter α > 0 which
must be chosen in a proper way. It turns out that determining a good value for α is a
difficult problem in practice, especially if the reconstructions should be done completely
automatic.
The functional in (III) is called Tikhonov-type functional due to TIKHONOV [Tik63a,Tik63b].
He considered approximating solutions to (I) as minimizers of

u 7→ ‖F (u)− Gt‖2
Y + α ‖u‖2

X

where the X-norm includes derivatives of the function u.
The reconstruction procedure (III) leads to several questions which need to be answered:

• Does uα in (III) exist?

• Does uα in (III) depend continuously on the data?

• For a proper choice of α depending on t (and maybe Gt), does uα converge in ex-
pectation or at least in probability to the true solution u† as t→ ∞?

• Can the rate of convergence in the former item be specified?

It can be shown under reasonable assumptions on S and R that uα as in (III) exists and
depends continuously on the data. To establish convergence (and convergence rates)
one usually needs a concentration inequality, which ensures that the difference between
S (F (u) ; Gt) and S

(
F (u) ; g†) is small with overwhelming probability as t → ∞. Such

a concentration inequality will be established in Chapter 4. This leads to the first main
result of this thesis, namely rates of convergence in expectation for uα as the observation
time t tends to ∞. One might argue that this result has no direct meaning for practical ap-
plications since t will be fixed or at least bounded in this context, but it indicates that the
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method (III) works and yields reasonable reconstructions. Furthermore, convergence rates
provide a qualitative estimate how much the reconstructions will profit by an improved
measurement procedure which yields higher values of t, i.e. how much an increase of the
number of photons will increase the accuracy of the reconstruction. This is of interest in
practice for example to decide if more harm for a patient should be accepted or if a more
expensive device should be used.

We consider especially three applications from photonic imaging, namely an inverse ob-
stacle scattering problem without phase, a phase retrieval problem from optics and a
semiblind deconvolution problem. All three examples have in common that they are
nonlinear (i.e. the describing operator F is nonlinear), and thus the functional from (III)
is no longer convex in u. Unfortunately this implies that there might exist many local
minimizers and thus uα is difficult to calculate.
Usually the first choice for solving nonlinear equations is Newton’s method. It consists
in linearizing the problem (I) and solving the linearized equations iteratively.
For a nonlinear Fréchet differentiable operator F : D (F) ⊂ X→ Y one ends up with the
linearized equations

F (un) + F′ [un] (u− un) = g (IV)

which need to be solved in every Newton step for u = un+1.
At this point, we are again able to incorporate our knowledge about the distribution of
Gt, i.e. we approximate u† by

un+1 ∈ argmin
u
S
(

F (un) + F′ [un] (u− un) ; Gt
)

. (V)

Unfortunately, the ill-posedness of F carries over to F′ [un] under very mild conditions
and hence also (V) is ill-posed. Thus, in every Newton step some sort of regularization is
needed. This leads to our second approach to tackle (I), namely an iteratively regularized
Newton method of the form

un+1 := argmin
u∈B

[
S
(

F (un) + F′ [un] (u− un) ; Gt
)
+ αnR (u)

]
(VI)

where u0 ∈ X is some (sufficiently good) initial guess and R is again a penalty term
based on a priori knowledge. As Newton’s method is known to converge very fast (at
least locally) under reasonable conditions on F, we expect that only a few iterations of
the method (VI) are necessary. As in (III), the regularization parameters αn > 0 need to
be chosen in a proper way, but the more difficult issue in (VI) is the determination of a
suitable stopping index N. The second main result of this thesis are rates of convergence
for uN in expectation at t→ ∞ for different choices of N, namely an a priori choice where
N is determined before the reconstruction starts and an adaptive a posteriori choice where
the index N is determined during the iteration procedure.

The existing theory on inverse problems with Poisson data is far away from being com-
plete. Inverse problems with Poisson data have been studied by ANTONIADIS & BIGOT

[AB06] for strongly restricted classes of linear operators F only. The method (III) has been
studied by BARDSLEY [Bar10], BENNING & BURGER [BB11] and Flemming [Fle10, Fle11],
but only under deterministic noise assumptions. The case of additive random noise was
treated by BISSANTZ, HOHAGE & MUNK [BHM04], but this does not apply to the case of
Poisson data. For the general Newton-type method (IV) no deterministic convergence
analysis exists to the authors best knowledge. A convergence analysis for nonlinear
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Chapter 1: Introduction

inverse problems with additive random noise was presented by BAUER, HOHAGE &
MUNK [BHM09], but the theory there does again not apply to the case of Poisson data.
It is the main aim of this thesis to provide a proper setup for inverse problems with Pois-
son data and to present first convergence rates results for the aforementioned methods.

The detailed organization of this thesis is as follows.
In Chapter 2 we will describe the data distribution and the model we use explicitly. Af-
terwards we will present the considered applications in detail.
Chapter 3 is dedicated to the analysis of (III) in a deterministic setup. We will repeat the
known theory about the well-posedness of (III) before we present our assumptions which
are used to obtain convergence rates. These assumptions will be linked to the smoothness
of the unknown solution u† and formulated in terms of variational inequalities, which are
discussed in detail. Afterwards we present our convergence theorems for Tikhonov-type
regularization (III) under an a priori as well as a Lepskiı̆-type parameter choice rule.
In Chapter 4 we will apply the theory from Chapter 3 to the case of random data. There-
fore we will first provide a concentration inequality and afterwards modify our proofs
from the aforementioned chapter to gain convergence rates under an a priori as well as a
Lepskiı̆-type parameter choice rule. This chapter closes part one of this thesis and com-
pletes our theoretical results on Tikhonov-type regularization.
Chapter 5 states the known results on the iteratively regularized Gauss-Newton method
(IRGNM), which is given by (VI) with S (g; ĝ) = ‖g− ĝ‖p

Y
and R (u) = ‖u− u0‖q

X for
Banach norms ‖·‖Y and ‖·‖X. The presented results form the basis for the generalization
(VI) of this method we aim for.
The generalization of the IRGNM - the proposed iteratively regularized Newton method
(VI) - is analyzed in the deterministic setup in Chapter 6. To obtain rates of convergence
for this method, we first describe generalized assumptions on the nonlinearity of F and
combine them afterwards with the smoothness assumptions from Chapter 3 to gain con-
vergence rates. Again, we consider an a priori as well as a Lepskiı̆-type stopping rule.
In Chapter 7 we will apply the theory from Chapter 6 to the case of random data. This
is done similarly to the case of Tikhonov-type regularization with the help of the concen-
tration inequality from Chapter 4. This chapter completes the theory for (VI).
The last part of this thesis is contained in Chapter 8, where we present our simulations
and calculations for the applications from Chapter 2.
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Chapter 2: Inverse problems with Poisson data

CHAPTER

TWO

INVERSE PROBLEMS WITH POISSON DATA

In this chapter we will introduce the Poisson distribution and present some examples for
inverse problems with Poisson data. In this field, ideal measurements (neglecting read-
out errors and finite volume averaging of the detectors) are given by a Poisson point
process with the true data g† as mean, as we will motivate in Section 2.2. We will give a
definition and fundamental properties of a Poisson point process.

2.1 Poisson data

2.1.1 The Poisson distribution

Before we are able to describe Poisson point processes, we need to recall the Poisson
distribution. It is used to model the emission of radioactive particles over a fixed time
interval or to account for the arrival times of telephone calls at an exchange. Roughly
spoken, the Poisson distribution is used whenever one counts how often a phenomenon
happens during a period of time or in a given area under the assumption that the proba-
bility of the phenomenon to happen is constant in time or space.
The Poisson distribution is defined as follows:

DEFINITION 2.1:
A random variable X is said to have the Poisson distribution P (λ) with parameter λ ∈ (0, ∞),
if its range consists only of non-negative integers and it holds

P (X = k) = exp (−λ)
λk

k!
(2.1a)

for all k ∈N0. For such X we write X ∼P (λ).

This definition can be extended easily to the limit cases λ ∈ {0, ∞} by defining a Poisson
distribution P (0) to be concentrated at 0, i.e.

P (X = k) =

{
1 if k = 0,

0 otherwise,
(2.1b)

and a Poisson distribution P (∞) to be concentrated at ∞, i.e.

P (X = k) =

{
1 if k = ∞,

0 otherwise.
(2.1c)
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2.1: Poisson data

One of the basic properties of the Poisson distribution is that both, mean and variance,
are given by the parameter λ, i.e.

E (X) = λ, (2.2a)

V (X) = λ, (2.2b)

which can be obtained directly by summation.
Whenever X ∼P (λ) is observed, the question arises if the parameter λ can be estimated
from the observation k. In the general theory of random variables there is a vast litera-
ture on suitable estimators of parameters or other distribution characteristics. We are
mainly interested in the maximum likelihood property of an estimator which is defined
as follows:

DEFINITION 2.2:
Let X ∼P (λ) be a random variable and let λ̄ = λ̄ (k) be an estimator for the parameter λ. λ̄ is
said to have the maximum likelihood property, if for any event k ∈N0 it holds

P
(
X = k

∣∣ X ∼P
(
λ̄
))
≥ P

(
X = k

∣∣ X ∼P (λ∗)
)

for all λ∗ ∈ [0, ∞) . (2.3)

Hence, a maximum likelihood estimator λ̄ for λ maximizes the probability to observe
k. Inserting the definition of the Poisson distribution into (2.3), it is easy to see that λ̄
maximizes the so-called maximum likelihood functional

λ 7→ P
(
X = k

∣∣ X ∼P (λ)
)
= exp (−λ)

λk

k!
(2.4)

over λ ∈ [0, ∞) for fixed k ∈N0. Via differentiation of (2.4) we obtain easily that

λ̄ := k

is the only maximum likelihood estimator for the Poisson distribution. But moreover,
the characterization of this estimator as the maximizer of (2.4) is quite helpful as already
mentioned in the introduction. For simplicity, not the functional (2.4) itself is maximized,
but the negative logarithm of (2.4) is minimized (which yields the same solution). The
corresponding functional is known as the negative log-likelihood functional ρpoiss. Up
to a constant independent of λ it is given by

ρpoiss (λ; k) := λ− k ln (λ) , k ∈N0, λ ∈ [0, ∞)

where we use the convention 0 ln (0) := 0. In case of a vector (X1, ..., Xd) of independent
Poisson distributed random variables Xi ∼ P (λi) and an event vector k = (k1, ..., kd) ∈
Nd

0, this generalizes to

ρpoiss (λ; k) :=
d

∑
i=1

[λi − ki ln (λi)] , k ∈Nd
0, λ ∈ [0, ∞)d . (2.5)

Using the convention 0 ln (0) := 0 as above and defining ρpoiss (λ; k) := ∞ if λi < 0
for some i ∈ {1, ..., d}, the functional (2.5) is defined for any λ ∈ Rd and enforces its
minimizers to fulfill λi > 0 if ki > 0 and λi ≥ 0 if ki = 0. Note moreover that ρpoiss is
convex in its first argument.

8



Chapter 2: Inverse problems with Poisson data

The fact that the Poisson distribution P (λ) concentrates more and more around its ex-
pectation λ as λ → ∞ is reflected by estimates in probability, which can be seen as pro-
totypes of concentration inequalities. The most simple example of a concentration in-
equality is TSCHEBYSCHOW’S inequality

P (|X− E (X)| ≥ a) ≤ V (X)

a2 (2.6)

which holds for any a > 0 and any real valued random variable X with finite second
moment. The concentration gets visible if we introduce a scaling parameter t > 0 which
should be interpreted as an observation time and define for fixed λ > 0 the random
variables Y ∼ P (tλ) and the normalization X := 1

t Y. Then (2.6) implies by E (X) = λ

and V (X) = 1
t2 V (Y) = 1

t λ that

P (|X− λ| ≥ a) ≤ λ

ta2 → 0 as t→ ∞.

This ensures that X is as more centered around its expectation E (X) = λ the larger t is.

2.1.2 Poisson point processes

In this section we will give a definition and present some fundamental properties of a
Poisson point process. For more information about Poisson processes in general we refer
to [Kin93] and the references therein. This section has been developed along [Kin93]
and [RB03].
A Poisson point process can be described as a (countable) random set of points in the
state space Ω. In our setup, Ω will be an observation manifold in Rd, e.g. an open set
or a sphere. The geometry of the space Ω is not of interest for the Poisson point process,
the only thing required is a measurable space containing enough measurable sets. For
such a random set of points to be a Poisson point process, two features are characteristic:
statistical independence and the Poisson distribution. This is clarified in the following
definition:

DEFINITION 2.3 (POISSON POINT PROCESS):
Let (Ω, Σ) be a measurable space with {x} ∈ Σ for all x ∈ Ω. A random countable set of points
G is said to be a Poisson point process (or short Poisson process) on (Ω, Σ) if

(a) for all disjoint sets A1, ..., An ∈ Σ the random variables

Nj = N
(

Aj
)

:= #
(
G ∩ Aj

)
denoting the number of points from G lying in Aj are statistically independent and

(b) there exists a mean measure ν such that for all A ∈ Σ the random variable N (A) obeys a
Poisson distribution with parameter ν (A), i.e. N (A) ∼P (ν (A)).

For more information about Poisson point processes and point processes in general we
refer to [KMM78, Rei93]. A simulation of a Poisson process is shown in Figure 2.1.
First of all, the definition of the Poisson distribution (2.1) ensures P (N (A) = ∞) = 0 if
ν (A) < ∞. Therefore, if the mean measure ν is finite, the Poisson process G consists of
a finite set of points with probability 1. This allows for a representation of G as a sum of
Dirac measures

G =
N

∑
k=1

δxi (2.7)
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2.1: Poisson data
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Figure 2.1: Simulated observation of a Poisson point process on Ω = [0, 1]2 with mean
measure dν = g dx where g (x1, x2) =

1
10000 x1 · x2.

where in the setup of photonic imaging the point xk corresponds to the position of the k-th
detected photon and N is the total number of detected photons. Note that N ∼P (ν (Ω))
and especially E (N) = ν (Ω). The representation (2.7) allows for xi = xj with i 6= j,
i.e. it would be possible to count two (or more) photons at the same position. But our
definition of the Poisson process as a random set of points prohibits that and hence in our
continuous setup all points xi need to be pairwise different. For real world measurements
where some finite volume averaging needs to be applied, this is not necessarily the case
since every detector measures photons occurring in an area of positive size, where hence
arbitrarily many photons might be observed in that area.
It follows immediately from the property (b) of Definition 2.3 that the mean measure ν is
always a measure without atoms, i.e.

ν ({x}) = 0 for all x ∈ Ω, (2.8)

since otherwise (b) with A = {x} ∈ Σ leads to

P (N (A) ≥ 2) =
∞

∑
k=2

exp (−ν (A))
ν (A)k

k!

= 1− exp (−ν ({x}))− ν ({x}) exp (−ν ({x}))
> 0

which contradicts N (A) = #G ∩ {x} ≤ 1.
The representation (2.7) of G as a measure itself allows to define integrals w.r.t. G in an
easy manner: For a measurable function f : Ω→ R we set

∫
Ω

f dG =
N

∑
k=1

f (xk) .

With this, one obtains formulas for the expectation and variance of integrals w.r.t. G (if
existent) of the following kind (cf. [Kin93, eq. (3.9) and (3.10)]):

10



Chapter 2: Inverse problems with Poisson data

E
∫
Ω

f dG =
∫
Ω

f dν, (2.9a)

V
∫
Ω

f dG =
∫
Ω

f 2 dν. (2.9b)

The integrals on the right-hand side simplify if the Poisson process has a special structure
as given in the following definition:

DEFINITION 2.4:
Let G be a Poisson point process on (Ω, Σ) with mean measure ν where Ω is a subset of Rd and
Σ the Borel σ-algebra on Ω.

• If ν is absolutely continuous w.r.t. the Lebesgue measure, then the Radon-Nikodym deriva-
tive g ∈ L1 (Ω) of ν w.r.t. the Lebesgue measure is called the intensity of G.

• If G has a constant intensity g, then G is called a homogeneous Poisson process.

Note that for a Poisson process with intensity g we have N (A) ∼ P
(∫

A g dx
)

for all
Borel measurable sets A. Even though our definition of a Poisson process requires the
Poisson distribution explicitly, the Poisson distribution is in some sense inevitable, as the
following theorem states:

THEOREM 2.5:
Let Ω ⊂ Rd be open and let Σ be the Borel σ-algebra on Ω. Assume that a random countable set
of points G (i.e. a point process) is given such that

(a) for all disjoint sets A1, ..., An ∈ Σ the random variables Nj are statistically independent
and

(b) there exists an intensity g ∈ L1 (Ω) such that for all A ∈ Σ we have E (N (A)) =
∫

A g dx.

Then we have N (A) ∼P
(∫

A g dx
)

for all A ∈ Σ, i.e. G is a Poisson process with intensity g.

PROOF:
See e.g. [KMM78, Thm 1.11.8] or [Kal97, Thm. 10.11].

In the following we will due to Theorem 2.5 assume that the measure space (Ω, µ) from
the definition of a Poisson process is given by the Lebesgue measure on Ω and the mea-
surable sets are those contained in the Borel σ-algebra, i.e. dµ = dx.
In a more general setup, we could also allow the measurement manifold Ω to include a
time variable τ, i.e. Ω = Ω̄× (0, t). This would allow for non-stationary intensities g of
G, but due to our main application we are interested in the case that g does not change
over the whole observation time t. This can be modeled by our setup from above as
follows:
BASIC ASSUMPTIONS AND NOTATIONS 1:
We assume that our data consist of a possibly inhomogeneous Poisson process Gt with
spatial intensity tg† (which corresponds to a mean measure dν = tg† dx) where the pa-
rameter t > 0 can be interpreted as the observation time of the object.
For our theoretical analysis we will study the limit t→ ∞ using the noise level

ψ (t) :=
1√

t
, t > 0. (2.10)

11



2.1: Poisson data

If
∫

Ω g† dx = 1, the expected number of total photons N is equal to t (i.e. E (N) = t) and
thus the data contains more information the larger t is.
If we consider the normalized Poisson process 1

t Gt, then by (2.9) we have by the meaning
of integrals

“E
( 1

t Gt
)
= g†” and “V

( 1
t Gt
)
= 1

t2 tg† = 1
t g†”.

Considering the standard deviation (i.e. the square-root of the variance) as noise level,
this shows that ψ (t) indeed describes the decay of the noise.

The fact that the normalized Poisson process 1
t Gt concentrates more and more around

its “expectation” g† for t → ∞ is described more precisely by concentration inequali-
ties. For a Poisson process (2.7), concentration inequalities are more difficult to handle
than (2.6), since symbols like E (Gt) or V (Gt) do not exist. Moreover, a concentration
inequality of the form (2.6) would not be sufficient since inequalities which control the
supremum over all integrals of f w.r.t. the difference Gt − ν for f in a suitable family
are needed. Concentration inequalities of this type usually base on the work of TALA-
GRAND, who contributed a lot to the theory of stochastic processes in Banach spaces. We
will use the following concentration inequality, which has been proven by REYNAUD-
BOURET [RB03] and reads as follows:

LEMMA 2.6 ( [RB03, COROLLARY 2]):
Let G be a Poisson process with finite mean measure ν. Let { fa}a∈A be a countable family of
functions with values in [−b, b]. One considers

Z := sup
a∈A

∣∣∣∣∣∣
∫
Ω

fa (x) (dG− dν)

∣∣∣∣∣∣ and v0 := sup
a∈A

∫
Ω

f 2
a (x) dν.

Then for all positive numbers ρ and ε it holds

P
(

Z ≥ (1 + ε) E (Z) +
√

12v0ρ + κ (ε) bρ
)
≤ exp (−ρ) (2.11)

where κ (ε) = 5/4 + 32/ε.

REYNAUD-BOURET [RB03] describes this result as an analogon “to Talagrand’s inequali-
ties for empirical processes”.

As mentioned in the introduction, we want to use the negative log-likelihood functional
to incorporate the data distribution into our reconstruction process. The negative log-
likelihood functional has already been calculated in Section 2.1.1 for an elementwise Pois-
son distributed vector (2.5). It seems natural to generalize this functional to the case of
data Gt as

ρpoiss (g; Gt) =


∫
Ω

g dx−
∫
Ω

ln (g) dGt if g ≥ 0 a.e.,

∞ otherwise.

By definition, we have
∫

Ω ln (g) dGt = ∑N
k=1 ln (g (xk)) which is infinite if g (xk) = 0 for

any k ∈ {1, ..., N}. Nevertheless, since Gt consists of more photons the larger t is, the
functional will tend to ∞ as t→ ∞.

Therefore, some normalization is needed and so we define

St (g; Gt) :=


∫
Ω

g dx− 1
t

∫
Ω

ln (g) dGt if g ≥ 0 a.e.,

∞ otherwise
(2.12a)

12



Chapter 2: Inverse problems with Poisson data

as data misfit functional for random data Gt. In case of exact data g†, the functional (2.5)
is generalized to the continuous case by

S
(

g; g†
)

:=


∫
Ω

g dx−
∫
Ω

ln (g) g† dx if g|{g†>0}
> 0 a.e., g|{g†=0}

≥ 0 a.e.,

∞ otherwise.
(2.13)

The connection between (2.12a) and (2.13) is clear, since in case of noisy data the exact
mean measure dν = tg† dx has been replaced by the Poisson process dGt. The functional
(2.13) is up to a constant the well-known Kullback-Leibler divergence KL

(
g†; g

)
, where

the constant is chosen such that KL
(

g†; g†) = 0:

KL
(

g†; g
)
=


∫
Ω

(
g− g† + g† ln

(
g†

g

))
dx if g|{g†>0}

> 0 a.e., g|{g†=0}
≥ 0 a.e.,

∞ otherwise.
(2.12b)

In comparison to our previously introduced data fidelity S , the arguments for the Kull-
back-Leibler divergence are interchanged due to general notation conventions. This is
kept for the whole thesis, and if we say that KL is used as data fidelity term w.r.t. exact
data, then this means S

(
g; g†) = KL

(
g†; g

)
and so on.

The aforementioned concentration inequality (2.11) does not apply in case of St as dis-
cussed above, since the functions ln (g) will in general be unbounded. Therefore, we will
introduce a shift e > 0 in the following way:

KLe

(
g†; g

)
=

{
KL

(
g† + e; g + e

)
if g ≥ − e

2 a.e.,

∞ otherwise,
(2.14a)

Se,t (g; Gt) =


∫
Ω

g dx− 1
t

∫
Ω

ln (g + e) dGt − e
∫
Ω

ln (g + e) dx if g ≥ − e
2 a.e.,

∞ otherwise.
(2.14b)

Note that Se,t is again convex in its first argument. By definition it holds KLe (ĝ; g) =
KL (ĝ + e; g + e) if g ≥ − e

2 a.e. and especially KL0 = KL. The same is true for the data
fidelity in case of noisy data, S0,t = St for any t > 0. In this sense, (2.14) is a generalization
of (2.12).
We want to point out that the relaxation parameter e > 0 has been introduced due to the
concentration inequality (2.11). If we had a concentration inequality for unbounded func-
tions (say L2) at hand, then the convergence analysis would work also for the case e = 0.
In principle, e > 0 can be interpreted as some background noise which always occurs and
does not influence the data distribution. Nevertheless, for e > 0 the data fidelity Se,t is
not the true negative log-likelihood functional, but for small e it seems to be a reasonable
approximation of it. Moreover, the numeric computations become easier for e > 0 due to
the relaxation of the singularity at 0. We hope to find a concentration inequality for un-
bounded functions fa in (2.11) in future, which will then lead to a convergence analysis
for e = 0.

2.2 Examples of inverse problems with Poisson data

The most important examples of inverse problems with Poisson data are applications
from photonic imaging. In photonic imaging the data consist of photon counts where

13



2.2: Examples of inverse problems with Poisson data

the photons have interacted with some unknown object u† of interest. If we assume that
the interaction of the photons with u† can be described by a possibly nonlinear operator
equation

F
(

u†
)
= g†,

then the measurements are described by photon counts from the true photon density g†

on the measurement manifold Ω ⊂ Rd. If we assume to have a perfect photon detector,
then due to fundamental physical reasons photon counts can be seen as a random set of
points such that

• the counts on disjoint measurable sets are independent and

• the expected number of counts on a measurable set A is given by t
∫

A g† dx with
some parameter t > 0 (referred to as observation time).

Hence it follows directly from Theorem 2.5 that the measurements are mathematically
described by a Poisson process with intensity tg† if we neglect finite volume averaging
and read-out noise.
In the following we will present three important examples from photonic imaging, which
will also be treated in Chapter 8 by simulations and numerical tests.

2.2.1 An inverse obstacle scattering problem without phase

The scattering of polarized, transverse magnetic time harmonic electromagnetic waves
by a perfect cylindrical conductor with smooth cross section D ⊂ R2 is described by the
Helmholtz equation with homogeneous Neumann boundary conditions and the Som-
merfeld radiation condition

∆u + k2u = 0, in R2 \ D, (2.15a)

∂u
∂n

= 0, on ∂D, (2.15b)

lim
r→∞

√
r
(us

r
− ikus

)
= 0, where r := |x| (2.15c)

with the incident field ui, the scattered field us and the total field u = ui + us. Here D is
compact, R2 \ D is connected, n is the outer normal vector on ∂D, and the incident field
is considered to be a plane wave with direction d ∈ S2 =

{
x ∈ R2

∣∣ |x| = 1
}

and wave
number k > 0, i.e. ui (x) = exp (ikd · x). This is a classical obstacle scattering problem,
and we refer to the monograph [CK97] for further details and references. An example of
u for a given shape D is shown in Figure 2.2.
The Sommerfeld radiation condition (2.15c) implies the asymptotic behavior

us (x) =
exp(ik |x|)√

|x|

(
u∞

(
x
|x|

)
+O

(
1
|x|

))
as |x| → ∞, and u∞ is called the far field pattern or scattering amplitude of us.
We consider the inverse problem to recover the shape of the obstacle D from photon
counts of the scattered electromagnetic field far away from the obstacle. Since the photon
density is proportional to the squared absolute value of the electric field, we have no
immediate access to the phase of the electromagnetic field. Since at large distances the
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Chapter 2: Inverse problems with Poisson data

−2 0 2

−2

0

2

Figure 2.2: Real part < (u) of the total field for the given peanut-shaped obstacle and an
incident wave from ’South West’.

photon density is approximately proportional to |u∞|2, our inverse problem is described
by the operator equation

F (∂D) = |u∞|2 . (2.16)

A similar problem has been studied by KRESS & RUNDELL [KR97] and with different
methods and noise models also by IVANYSHYN & KRESS [IK10]. Recall that |u∞| is in-
variant under translations of ∂D. Therefore, it is only possible to recover the shape, but
not the location of D. An example for photon counts from |u∞|2 is shown in Figure 2.3.

0 2 4 6
0

10

20

30

Figure 2.3: Exact and simulated Poisson data for the obstacle from Figure 2.2. The red
line shows |u∞|2, the blue crosses mark the simulated photon count data. The
observation time was t = 1000, i.e. the expected number of total counts is
1000.

2.2.2 A phase retrieval problem

A problem which often occurs in optics is the following: Given the modulus |F f | of the
Fourier transform of a function f : Rd → C we need to reconstruct the function f itself,
or equivalently to reconstruct the phase F f / |F f | of F f . Problems of this type are hence
called phase retrieval problems. Obviously, f is not uniquely determined by |F f | (for
example a shift f̄ (x) := f (x− y), y ∈ Rd does not change |F f |) and hence additional a
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2.2: Examples of inverse problems with Poisson data

priori information is needed. For phase retrieval problems in general see HURT [Hur89]
or KLIBANOV, SACKS & TIKHONRAVOV [KST95] and the references therein.
Let us motivate this class of problems by a specific application. Consider the case that
an incident plane wave in the R3 in x3 direction is sent in and passes through a non-
absorbing, weakly scattering object of interest in the lower half-space {x3 < 0} close to
the plane {x3 = 0}. Then the total field u solves the Helmholtz equation ∆u + k2u = 0
and a radiation condition in the half-space {x3 > 0}, and on the plane {x3 = 0} a repre-
sentation u (x′, 0) = exp (iϕ (x′)) holds true. If the wave length is small compared to the
length scale of the object, the projection approximation

ϕ
(

x′
)
≈ k

2

0∫
−∞

(
n2 (x′, x3

)
− 1
)

dx3, x′ ∈ R2

is valid where n describes the refractive index of the object of interest (see e.g. [Pag06, Sec.
2.1]). A sketch of the experiment is shown in Figure 2.4. A priori information on ϕ
concerning a jump at the boundary of its support can be obtained by placing a known
transparent object before or behind the object of interest.

Figure 2.4: A sketch of our experiment leading to a phase retrieval problem. An incident
plane wave is sent in in x3-direction and scatters at an unknown object of in-
terest D near the {x3 = 0} plane. Then the total field u solves the Helmholtz
equation and a radiation condition in {x3 > 0}. We aim to reconstruct infor-
mation on the obstacle D by meanings of the function ϕ, which can also be
seen as initial condition via u (x′, 0) = exp (iϕ (x′)) , x′ ∈ R2.

Now assume that we are able to measure the intensity

g
(
x′
)
=
∣∣u (x′, ∆

)∣∣2 , x′ = (x1, x2) ∈ R2

of the electric field at a measurement plane {x3 = ∆} far away, i.e. with large ∆. Apply-
ing the 2-dimensional Fourier transform F 2 w.r.t. x1 and x2 to u, using the well-known
properties of F and the Helmholtz equation, we find that

u
(
x′, x3

)
= F−1

2

(
exp

(
ix3

√
k2 − |·|2

)
· F 2 (exp (iϕ))

)
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since u (·, 0) = exp (iϕ (·)) can also be seen as an initial condition. Now replacing√
k2 − |·|2 by its second order Taylor expansion√

k2 − |ξ|2 ≈ k− |ξ|
2

2k
, |ξ| � k

we obtain the Fresnel approximation

u
(
x′, x3

)
≈ exp (ikx3)F−1

2

(
exp

(
− ix3 |·|2

2k

)
F 2 (exp (iϕ))

)
. (2.17)

Note that |ξ| � k can be assumed in the Fourier domain if the wave length is small
compared to the length scale of the object. For the next step we find that it holds

exp

(
− ix3 |·|2

2k

)
= F 2

(
− ik

x3
exp

(
i

k
2x3
|·|2
))

in a distributional sense. For any Schwartz function u0 the convolution theorem yields
now

F−1
2

(
exp

(
− ix3 |·|2

2k

)
· F 2 u0

)
= − ik

x3
exp

(
i

k
2x3
|·|2
)
∗ u0

and this result can be extended to the case u0 = exp (iϕ) by adding an imaginary part to
ϕ which tends to 0.
Thus we obtain

u
(

x′, x3
)
≈ 1

2π
exp (ikx3)

((
− ik

x3
exp

(
i

k
2x3
|·|2
))
∗ exp (iϕ)

) (
x′
)

= − ik
2πx3

exp (ikx3)
∫

R2

exp
(

i
k

2x3

∣∣x′ − y′
∣∣2) exp

(
iϕ
(
y′
))

dy′.

Some manipulations of the right-hand side show now that

u
(
x′, x3

)
≈ − ik

2πx3
exp

(
ikx3 +

ik
2x3

∣∣x′∣∣2) ∫
R2

exp

(
ik |y′|2

2x3
− i

k
x3

x′y′
)

exp
(
iϕ
(
y′
))

dy′.

Finally, since we are interested in g (x′) = |u (x′, ∆)|2 for large ∆ we use the Fraunhofer
approximation (see e.g. BORN & WOLF [BW99, Sec. 8.3.3] or PAGANIN [Pag06, Sec. 1.5])

and drop the term k|y′|2
2x3

which leads to

∣∣u (x′, ∆
)∣∣2 ≈

∣∣∣∣∣∣ k
2π∆

∫
R2

exp
(
−i
(

k
∆

x′
)

y′
)

exp
(
iϕ
(
y′
))

dy′

∣∣∣∣∣∣
2

=
k2

∆2

∣∣∣∣F (exp (iϕ))
(

k
∆

x′
)∣∣∣∣2 (2.18)

for sufficiently large ∆. So the operator

F : ϕ 7→ |F (exp (iϕ))|2

is up to some rescaling a reasonable approximation to the true forward map. A simulated
test object as well as corresponding true and simulated Poisson data for this problem are
shown in Figure 2.5.
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(a) Synthetic test object

−2

0
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(b) log10 of scaled exact data

−2

0

2

(c) log10 of synthetic Poisson data

Figure 2.5: A synthetic test object, corresponding true and simulated Poisson data. The
test object representing two cells has been taken from GIEWEKEMEYER ET AL.
[GKK+11]. The observation time was t = 104, i.e. the expected number of
total counts is 10.000.

2.2.3 A semiblind deconvolution problem in 4Pi microscopy

4Pi microscopy can be seen as an improvement of standard confocal microscopy. Both
applications have in common that a fluorescent marker density is imaged by counting the
emitted photons, which is for standard confocal microscopy modeled by a convolution
equation

g (x) = Fconf ( f ) (x) =
∫

[−R,R]d

h (x− y) f (y) dy, x ∈ [−R, R]d . (2.19)

Here f is a mathematical description of the fluorescent marker density on the domain
[−R, R]d, g is the measured intensity and h is called point spread function. Obviously,
h depends on the special structure of the microscope, but it is nevertheless most often
modeled as a Gaussian function.
The axial resolution of standard confocal microscopes is limited by the width of h along
the optical axis. To overcome this limit, the 4Pi principle uses interference of coherent
photons through two opposing objective lenses. This leads to an increase of the axial
resolution by a factor of 3-7, but unfortunately the mathematical model (2.19) is no longer
valid for this imaging process. The point spread function h depends now on the relative
phase φ of the interfering photons, which is in general non-constant and hence has to be
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(b) Exact phase
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Figure 2.6: Synthetic test object and test phase as well as corresponding true and simu-
lated Poisson data for the 4Pi problem. The expected number of total counts
is 226829.49.

recovered from g together with f . The imaging process is now modeled by an equation
of the form

g (x) = F4Pi ( f , φ) (x) :=
∫

[−R,R]d

p (y− x, φ (x)) f (y) dy, y ∈ [−R, R]d . (2.20)

Note that the operator F4Pi may be nonlinear in φ and that f 7→ F4Pi ( f , φ) is not a con-
volution operator in general. The 4Pi point spread function p is approximately given
by

p (x, ϕ) = h (x) cosn
(

cx3 +
ϕ

2

)
where h is the point spread function of the corresponding standard confocal microscope
and n ∈ {2, 4} (cf. [HS92]). The problem to reconstruct f and φ from observed data gobs

is in general underdetermined. Therefore, the information that f is a density and hence
non-negative should be incorporated into the reconstruction procedure. This is done by
choosing

B ⊆
{
( f , φ) ∈ X

∣∣ f ≥ 0 a.e.
}
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and searching only for ( f , φ) ∈ B with F4Pi ( f , φ) ≈ gobs. For more details on 4Pi mi-
croscopy in general and a fast implementation of F4Pi we refer to [Stü11].

2.3 General assumptions

As we have seen above, the measurements are mathematically described by a Poisson
process with the true photon density as intensity. All the aforementioned examples from
photonic imaging meet special properties for the forward operator F, which are collected
in the following assumption and which we will use for inverse problems with Poisson
data in general:

ASSUMPTION 2.7 (ASSUMPTION ON F FOR POISSON DATA):
(a) Let Y = L1 (Ω) ∩ L∞ (Ω) for some bounded observation domain Ω ⊂ Rd with Lipschitz

boundary ∂Ω.

(b) B ⊂ X is a bounded convex set contained in the Banach space X.

(c) The operator F : B → Y is continuously Fréchet differentiable with derivative F′ [u] :
X→ Y for all u ∈ B w.r.t. all Lp (Ω)-norms.

(d) F is injective on B and hence there exists a unique exact solution u† ∈ B of the exact
problem F (u) = g†.

(e) It holds
F(u) ≥ 0 a.e. for all u ∈ B.

The property (e) is required since data are drawn from a Poisson distribution with inten-
sity tg† = tF

(
u†). It is easy to see that the properties (a), (c) and (e) are fulfilled for the

operators above if the set B is properly chosen. If moreover B is bounded, then also (b)
is easy to fulfill. Assumption (d) is required to simplify the notation and the assertions
of our theorems, but we can also formulate a similar theory if F is not injective on B
by replacing the exact solution u† by a suitable generalization. This is not done here for
simplicity.
Since B is assumed to be bounded, we may define the finite quantity

diam (B) := sup
u,v∈B

‖u− v‖X

which will be used frequently in our convergence analysis.
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Chapter 3: Tikhonov-type regularization

CHAPTER

THREE

TIKHONOV-TYPE REGULARIZATION

This chapter deals with Tikhonov-type regularization for the solution of an ill-posed
problem

F (u) = g, (3.1)

i.e. a minimization problem of the type

uα ∈ argmin
u∈X

[
S
(

F (u) ; gobs
)
+ αR (u)

]
(3.2)

where S is some suitable data misfit andR some penalty. The number α > 0 determining
the weight ofR is called regularization parameter. We will call the method (3.2) Tikhonov-
type regularization due to the Russian mathematician TIKHONOV [Tik63a, Tik63b], who
proposed a stable way to approximate solutions of (3.1) via

uα ∈ argmin
u∈X

[∥∥∥F (u)− gobs
∥∥∥2

Y
+ α ‖u− u0‖2

X

]
(3.3)

in the case where Y is some Hilbert space and X is some Hilbert space of functions where
the norm ‖·‖X contains derivatives (e.g. X is some Sobolev space). By choosing some
specific u0, a priori information was incorporated into the regularization procedure. Our
generalized setup (3.2) includes this classical setting if we choose S (g; ĝ) := ‖g− ĝ‖2

Y

andR (u) = ‖u− u0‖2
X, which will be called quadratic Hilbert space case in the follow-

ing. Due to the specific structure of the problem, the minimizer (3.3) can be computed
by an explicit formula if F is linear (cf. Remark 3.7). This is no longer the case in the
general setting (3.2), but for convex S ,R and linear F, the problem (3.2) is convex and
can hence be solved with tools from convex optimization. If F is nonlinear, the problem
(3.2) might have many local minima and so uα is in general difficult to find. To overcome
this problem, we will consider an iteratively regularized Newton method, cf. Chapter 5
for the case of S andR given by norm powers and Chapter 6 for the most general case.

In this chapter we will start with an overview over the basic theory which shows that (3.2)
is appropriate to provide stable approximations to (3.1) and link it to the classical theory
of Tikhonov regularization (3.3) as presented by ENGL, HANKE & NEUBAUER [EHN96].
The theory for (3.2) has been described in detail in the PhD thesis [Pös08] by PÖSCHL,
which has also been the main reference for Section 3.1.
In Section 3.2 we introduce the concept of source conditions, mention some motivation
and interpretation and generalize this concept to the more recently developed one of vari-
ational source conditions. We briefly discuss the role of a suitable nonlinearity condition,
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3.1: Regularization properties

which will be done in more detail in Section 6.1. Afterwards we prove two general con-
vergence rates results (see Theorem 3.28 and Theorem 3.30). These results are new in the
presented formulation and cover known convergence rates results from the classical lit-
erature [EHN96] as well as more recent publications [BO04,Res05,SGG+08,FH10,Fle10].
The proofs use techniques introduced by KALTENBACHER & HOFMANN [KH10] and new
ideas.

3.1 Regularization properties

For variational regularization methods like (3.2), one usually requires the following prop-
erties:

(a) Well-definedness, i.e. for any α > 0 and any gobs ∈ Y there exists at least one
minimizer.

(b) Stability, i.e. for fixed α > 0 the minimizers uα depend continuously on gobs.

(c) Convergence, i.e. the regularized solutions uα converge to a solution of (3.1) as the
noise level and α tend to 0 in an appropriate manner.

Without the features (a) and (b), the approximation of solutions to (3.1) via (3.2) is not
appropriate, since then the problem (3.2) is again ill-posed. Uniqueness of the minimizers
is not needed, if (c) holds for any choice of a minimizer. Item (c) guarantees that the
regularized solutions uα indeed approximate solutions of the original problem (3.1). As
already mentioned in the introduction, the choice of the regularization parameter α is a
very delicate task. Moreover, we still have to define what is meant by noise level.

3.1.1 Notation

In the whole chapter we will use the following notations:

BASIC ASSUMPTIONS AND NOTATIONS 2:
• F : D (F) ⊂ X → Y is the forward operator, which is Fréchet differentiable with

derivative F′ [u] : X → Y for all u ∈ B where B ⊂ D (F) is some bounded convex
set (in principle we can assume D (F) = B).

• The exact right-hand side is denoted by g† ∈ Y.

• There exists a unique exact solution u† ∈ X of (3.1), i.e. F
(
u†) = g†.

• The measured data is denoted by gobs ∈ Y.

• For erroneous data we assume to have an upper bound S
(

g†; gobs) ≤ δ, where
δ > 0 is called the noise level.

To ensure the items (a)-(c) to hold, we need S ,R and F to fulfill certain conditions which
are related to the structure of the spaces X and Y as well as to the topologies on these
spaces w.r.t. which we want to have ’stability’ and ’convergence’. We collect these as-
sumptions as follows:

ASSUMPTION 3.1:
• X and Y are vector spaces with associated topologies τX and τY.

• F : D (F) ⊂ X→ Y is τX − τY continuous.
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Chapter 3: Tikhonov-type regularization

• D (F) is τX closed.

• R : X→ Y is proper, convex and τX lower semicontinuous.

• D := D (R) ∩ D (F) 6= ∅.

• S : Y×Y→ [0, ∞] fulfills the following conditions:

� If S (gk; g)→ 0, then gk → g w.r.t. τY.

� S is sequentially lower semi-continuous w.r.t. τY, i.e. for gk → v w.r.t. τY and
ĝk → ĝ w.r.t. τY it holds

S (g; ĝ) ≤ lim inf
k→∞

S (gk; ĝk) .

� If lim
k→∞
S (g; gk) = 0, then for every ĝ ∈ Y with S (ĝ; g) < ∞ we have

S (ĝ; gk)→ S (ĝ; g) .

� S (g; ĝ) = 0⇔ g = ĝ.

• For every α > 0, g ∈ Y and M > 0 the level sets{
u ∈ D

∣∣ S (F (u) ; g) + αR (u) ≤ M
}

are τX sequentially compact.

REMARK 3.2:
If one thinks of X and Y as Hilbert spaces and S (g; ĝ) = ‖g− ĝ‖2

Y ,R (u) = ‖u− u0‖2
X

for some u0 ∈ X, then choosing τX and τY as the weak topologies on X and Y makes
Assumption 3.1 for linear and bounded F fulfilled. In the case of a nonlinear F, one has
to assume additionally that F is continuous and weakly closed (cf. [EHN96, Sec. 10.1]).

3.1.2 Well-definedness, stability and convergence

THEOREM 3.3 (WELL-DEFINEDNESS):
Let Assumption 3.1 hold true and α > 0. Then there exists a solution of (3.2).

PROOF:
See [Pös08, Thm. 1.6].

THEOREM 3.4 (STABILITY):
Let Assumption 3.1 hold true and assume α > 0. Then the minimizers (3.2) are stable with
respect to the data gobs, this is, for any sequence (gk)k∈N ⊂ Y with S

(
gobs; gk

)
→ 0 a sequence

of corresponding minimizers

uk ∈ argmin
u∈X

[S (F (u) ; gk) + αR (u)]

has a subsequence, which converges w.r.t. τX and each limit of a convergent subsequence is a
minimizer (3.2). Moreover, for each τX convergent subsequence (ukm)m∈N

it holds R (ukm) →
R (uα) where uα is the corresponding solution of (3.2).

PROOF:
See [Pös08, Thm. 1.7].
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REMARK 3.5:
• In the Hilbert space case whereR (u) = ‖u− u0‖2

X and τX is the weak topology, we
gain strong convergence of (ukm)m∈N

to a minimizer uα fromR (ukm)→ R (uα).

• If the minimizer uα is unique (for example in the quadratic Hilbert space case for
linear F), we find that the whole sequence (uk)k∈N converges to uα w.r.t. τX.

THEOREM 3.6 (CONVERGENCE):
Let Assumption 3.1 hold true and assume α > 0. Moreover let a sequence (δk)k∈N of noise
levels be given which converges monotonically to 0 such that for corresponding data gk we have
S
(

g†; gk
)
≤ δk.

If the regularization parameters αk = α (δk) are chosen such that the sequence (αk)k∈N is mono-
tonically decreasing and fulfills

αk → 0 and
δk

αk
→ 0 as k→ ∞,

then any sequence of regularized solutions

uk ∈ argmin
u∈X

[S (F (u) ; gk) + αkR (u)]

is τX convergent to u†.

PROOF:
See [Pös08, Thm. 1.9].

REMARK 3.7 (LINK TO CLASSICAL THEORY):
In the case where X and Y are Hilbert spaces, S (g; ĝ) = ‖g− ĝ‖2

Y ,R (u) = ‖u− u0‖2
X

for some u0 ∈ X and F is a bounded linear operator mapping X to Y, the properties (a)
and (b) follow immediately from the representation (see [EHN96, Thm. 5.1])

uα = (F∗F + αI)−1 F∗gobs.

Property (c) has been formulated in a slightly different way by requiring that the worst
case error

sup
{∥∥∥uα(δ,gobs) − u†

∥∥∥
X

∣∣ gobs ∈ Y,
∥∥∥g† − gobs

∥∥∥
Y
≤ δ

}
tends to 0 as the noise level tends to 0. It is easy to show that under the same conditions on
the parameter choice Tikhonov regularization (3.3) leads to a convergent regularization
method (cf. [EHN96, Thm. 5.2]) where also the worst case error tends to 0.

3.2 Source conditions and convergence rates

In this section we present the results on convergence rates of Tikhonov-type regulariza-
tion (3.2). In the last decade, a vast number of publications on the analysis of gener-
alizations of the classical Tikhonov regularization (3.3) have been published. As a first
step only generalizations of the penalty term ‖u− u0‖2

X have been considered (see for
example [BO04, Res05, SGG+08]) and especially the case of a sparsity enforcing func-
tional R is still a domain of active research (cf. [DDD04, GHS08, Lor08] and Remark
3.39). More recently, also the most general case (3.2) has been analyzed by several au-
thors [Pös08, Bar10, FH10, Fle10, Fle11] but the theory cannot be considered to be com-
plete.
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Chapter 3: Tikhonov-type regularization

To provide convergence rates, the noise level definition S
(

g†; gobs) ≤ δ we chose at the
beginning of this chapter is not sufficient, since S does not necessarily fulfill a triangle
inequality. To overcome this problem, we will use the following noise level:
ASSUMPTION 3.8 (NOISE LEVEL):
The data misfit functionals S

(
·; g†) w.r.t. exact data and S

(
·; gobs) w.r.t. noisy data are

connected as follows: There exists a constant Cerr ≥ 1 and functionals err : Y → [0, ∞],
s : Y→ (−∞, ∞) such that

S
(

g; gobs
)
+ s

(
g†
)
≤ CerrS

(
g; g†

)
+ Cerrerr (g) (3.4a)

1
Cerr
S
(

g; g†
)
≤

(
S
(

g; gobs
)
+ s

(
g†
))

+ err (g) (3.4b)

for all g ∈ Y and it holds S
(

g†; g†) = 0.

This assumption needs some explanations:

• Obviously, (3.4) is always fulfilled with err (g) ≡ ∞. But since err (g) will be used
as noise level in the analysis, this case is useless. Therefore, we will require that
err (g) is not only finite but sufficiently small for those g, to which we will apply
(3.4). If for example S (g; ĝ) = ‖g− ĝ‖r

Y with r ∈ [1, ∞), then it follows from the
simple inequalities (a + b)r ≤ 2r−1 (ar + br) and |a− b|r + br ≥ 21−rar that (3.4)
holds true with err ≡

∥∥gobs − g†
∥∥r

Y
, Cerr = 2r−1 and s ≡ 0. In this sense, Assump-

tion 3.8 can be seen as a generalization of the classical noise level
∥∥gobs − g†

∥∥
Y
≤ δ.

In the following Lemma, we will provide expressions for err (g) in case of the nega-
tive log-likelihood functionals for Poisson noise as introduced in the previous chap-
ter, i.e. for S as in (2.14). Moreover in Chapter 4 we will describe bounds for err (g)
in probability in case of the negative log-likelihood for Poisson data as fidelity term.

• The functional s is used to overcome problems in estimating differences between
S
(
·; g†) and S

(
·; gobs) (see the lemma below). In the following we will assume

w.l.o.g. that s ≡ 0, since replacing S
(
·; gobs) by S

(
·; gobs) + s

(
g†) in any mini-

mization problem does not change the minimizers. Nevertheless, note that s
(

g†)
will be unknown in general and hence S

(
·; gobs)+ s

(
g†) is not implementable.

• Note that the noise level S
(

g†; gobs) ≤ δ which we used to prove the regular-
ization properties (cf. Section 3.1) is somehow covered by Assumption 3.8 with
δ = Cerrerr

(
g†), since

S
(

g†; gobs
)
≤ CerrS

(
g†; g†

)
+ Cerrerr

(
g†
)
= Cerrerr

(
g†
)

where we used S
(

g†; g†) = 0.

LEMMA 3.9 (VERIFICATION OF ASSUMPTION 3.8 FOR POISSON DATA):
Let Assumption 2.7 hold true and define

se

(
g†
)

:=
∫
Ω

[(
g† + e

)
ln
(

e
g† + e

)
− g†

]
dx, e > 0.

Then for the data fidelity functionals S
(
·, g†) and S

(
·, gobs) given by KLe and Se,t as in (2.14)

with e > 0 Assumption 3.8 holds true with Cerr = 1 and

err (g) =


1
t

∣∣∣∣∣∫Ω ln (g + e) (dGt − dν)

∣∣∣∣∣ if g ≥ − e
2 a.e.,

∞ otherwise.

(3.5)
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3.2: Source conditions and convergence rates

PROOF:
For the well-definedness of se we refer to [HW11]. From (3.4) it can be seen that for
Cerr = 1 the choice

err (g) =
∣∣∣KLe

(
g†; g

)
− se

(
g†
)
− Se,t

(
g; gobs

)∣∣∣
is always sufficient. Plugging in the definitions of KLe

(
g†; ·

)
, se and Se,t (·; Gt) respec-

tively yields the claim.

In the general setting (3.2), a norm ‖·‖X as distance measure is sometimes too restrictive
to provide convergence rates and often it does not occur naturally in the variational con-
text. Therefore, a widely used tool are Bregman distances, which coincide with the square
of a norm in the Hilbert space case ifR (u) = ‖u− u0‖2

X and can hence be seen as a gen-
eralization. The Bregman distance has been introduced by BURGER & OSHER [BO04] in
the context of inverse problems, and has previously been used implicitly for maximum
entropy regularization by EGGERMONT [Egg93]. The definition is as follows:

DEFINITION 3.10 (BREGMAN DISTANCE):
Let R : X → (−∞, ∞] be a convex and proper functional with subdifferential ∂R

(
u†) ⊂ X∗.

For u† ∈ X and u∗ ∈ ∂R
(
u†) the Bregman distance ofR is defined as

Du∗
R

(
u, u†

)
:= R (u)−R

(
u†
)
−
〈

u∗, u− u†
〉

, u ∈ X

where 〈·, ·〉 denotes the duality product of X∗ and X.

The Bregman distance can be visualized as the difference between the linearization of
R around u† evaluated at u (this is R

(
u†)+ 〈u∗, u− u†〉) and the true value R (u) (cf.

Figure 3.1).
Depending on special properties of the Banach space X and the penalty functionalR the
Bregman distance is related to the norm. Some geometric properties of (special) Banach
spaces are repeated in the following (see e.g. [BKM+08] and the references therein).

DEFINITION 3.11 (MODULUS OF CONVEXITY AND MODULUS OF SMOOTHNESS):
The function δX : [0, 2]→ [0, 1] defined by

δX (ε) := inf
{

1−
∥∥∥∥1

2
(u + v)

∥∥∥∥
X

∣∣∣ ‖u‖X = ‖v‖X = 1, ‖u− v‖X ≥ ε

}
is called the modulus of convexity of X and the function ρX : [0, ∞)→ [0, ∞) defined by

ρX (τ) :=
1
2

sup
{
‖u + v‖X + ‖u− v‖X − 2

∣∣ ‖u‖X = 1, ‖v‖X ≤ τ
}

is called the modulus of smoothness of X.

DEFINITION 3.12:
The Banach space X is said to be

• reflexive if the canonic embedding X 3 u 7→ Eu ∈ X∗∗ with (Eu) (u∗) := 〈u∗, u〉 for
u ∈ X, u∗ ∈ X∗ is an isomorphism,

• strictly convex if the functional X 3 u 7→ ‖u‖2
X ∈ R is strictly convex,
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R

b

u†
b

u

bR (u)

b R
(
u†
)

+
〈
u∗, u− u†

〉

Du∗
R

(
u, u†

)

Y

X

1

Figure 3.1: The Bregman distance ofR (x) = x · ln (x) between u and u†.

• uniformly convex if δX (ε) > 0 for all ε ∈ (0, 2],

• p-convex for some p > 1 if there exists some C > 0 such that δX (ε) ≥ Cεp for all
ε ∈ [0, 2],

• smooth if for any u ∈ X \ {0} there exists a unique u∗ ∈ X∗ such that ‖u∗‖X∗ = 1 and
〈u∗, u〉 = ‖u‖X (〈·, ·〉 denotes the dual pairing between X and X∗),

• uniformly smooth if limτ↘0
ρX(τ)

τ = 0,

• q-smooth for some q > 1 if there exists some C > 0 such that ρX (τ) ≤ Cτq for all
τ ∈ [0, ∞).

From the polarization equality it can be seen that Hilbert spaces are 2-smooth and 2-
convex and hence uniformly smooth and uniformly convex by definition. Moreover, for
example the Banach space Lp (Ω) with 1 < p ≤ 2 is 2-convex and p-smooth whereas
Lq (Ω) with 2 ≤ q < ∞ is q-convex and 2-smooth. In general, X is p-convex if and only if
X∗ is q-smooth where 1

p +
1
q = 1.

With the help of the above definitions we are now able to present a very helpful lemma
on the Bregman distance, which in core goes back to work of XU & ROACH [XR91]:

LEMMA 3.13:
Let X be a p-convex Banach space andR (u) = ‖u‖p

X. Then there exists some constant Cbd > 0
such that ∥∥∥u− u†

∥∥∥p

X
≤ CbdDu∗

R

(
u, u†

)
. (3.6)

PROOF:
See [BKM+08, Lem. 2.7]
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Note that for a Hilbert space X and p = 2 we moreover have Cbd = 1 and equality in
(3.6). For more information about the Bregman distance, we refer to [SGG+08, Sec. 3.2].

Now we are able to present the first step towards a convergence analysis:
LEMMA 3.14:
Let Assumption 3.8 hold and let α > 0. Then the minimizers uα fulfill the inequality

αDu∗
R

(
uα, u†

)
+

1
Cerr
S
(

F (uα) ; g†
)
≤ α

〈
u∗, u† − uα

〉
+ err (3.7)

where
err := err (F (uα)) + Cerrerr

(
g†
)

. (3.8)

PROOF:
The minimizing property leads to

S
(

F (uα) ; gobs
)
+ αR (uα) ≤ S

(
g†; gobs

)
+ αR

(
u†
)

and by rearranging terms we find

αDu∗
R

(
uα, u†

)
+ S

(
F (uα) ; gobs

)
≤ S

(
g†; gobs

)
− α

〈
u∗, uα − u†

〉
where we used the definition of the Bregman distance. Now adding se

(
g†) on both sides

and using (3.4) yields the claim.

3.2.1 Source conditions

From this result it is obvious that an appropriate estimate for
〈
u∗, u† − uα

〉
is sufficient to

obtain convergence rates. On the other hand it is well-known from the classical theory
(see e.g. [EHN96, Prop. 3.11]) that the convergence in Theorem 3.6 can be arbitrarily slow,
i.e. without further assumptions on u† no convergence rates can be obtained.

Spectral source conditions

In the classical setup where the underlying spaces X and Y are Hilbert spaces, range
conditions of the form

u† − u0 = ϕ
(

F′
[
u†
]∗

F′
[
u†
])

ω (3.9)

are usually posed for some index function ϕ : (0, ∞) → (0, ∞), i.e. ϕ is continuous,
strictly increasing and fulfills ϕ (0) = 0. The condition (3.9) uses the functional calculus
and hence the underlying space structure explicitly. Such conditions were systematically
studied in [Heg95, MP03]. The most common choices for ϕ are

ϕν (t) := tν, ν > 0, (3.10a)

which is referred to as Hölder-type source condition and

ϕ̄p (t) :=

{
(− ln (t))−p if 0 < t ≤ exp (−p− 1) ,
0 if t = 0,

p > 0, (3.10b)

which is known as logarithmic source condition. It is obvious that ϕν is an index func-
tion, and via differentiation the same may be seen for ϕ̄p. If necessary, ϕ̄p can be extended
concavely to (exp (−p− 1) , ∞) via continuation by a suitable line.

For many interesting operators F range conditions of the form (3.9) can be interpreted as
a smoothness condition in the sense that u† belongs to some Sobolev space:
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• In case of numerical differentiation (i.e. F is the bounded linear operator given
by (Fu) (y) =

∫ y
0 u (x) dx, y ∈ [0, 1] mapping L2

� ([0, 1]) where the index � in-
dicates that

∫ 1
0 u dy = 0 into itself), we have (3.9) with ϕ = ϕν if and only if

u† ∈ H2ν
per ([0, 2π]).

• For the backwards heat equation where one tries to determine the initial value
u (·, 0) from the heat distribution u (·, T) at some later date T > 0 it holds that

R
(

ϕ̄p (F∗F)
)
= D

(
(I − ∆)p)

where F = c · exp (T∆) denotes the (linear) forward operator, c > 0 is some con-
stant, ∆ is the Laplace operator and I denotes the identity. The underlying spaces
are chosen as X = Y = L2 (Ω) (cf. [Hoh00, Sec. 8.1]).

If Ω = Rm, then D
(
(I − ∆)p) = H2p (Rm), otherwise some boundary condition

has to be included (see also [Hoh99, Sec. 3.71]). Hence, (3.9) with ϕ = ϕ̄p is equiv-
alent to u† ∈ H where H is some subset of H2p (Ω) depending on the boundary
condition.

• If one tries to determine the potential of the earth from satellite measurements of
the gravitational forces change rate in space this leads to a linear inverse problem
where (3.9) with ϕ = ϕ̄p is equivalent to u† ∈ Hp (S2) with the unit sphere S2

(cf. [Hoh00, Sec. 8.2]).

• HOHAGE [Hoh97] has moreover shown that for an inverse potential as well as an
inverse scattering problem (which are both nonlinear) the condition (3.9) with ϕ =
ϕν is too restrictive in the sense that even analyticity of u†− u0 does not ensure (3.9)
with ϕ = ϕν to be fulfilled. Nevertheless, (3.9) with ϕ = ϕ̄p has a suitable meaning
for both examples.

For a compact linear operator F = T we expect roughly spoken the following behavior: If
the singular values σn of T decay to 0 at a polynomial rate, then (3.9) with ϕ = ϕν seems
reasonable. If σn decays exponentially to 0, then (3.9) with ϕ = ϕν will in general be not
fulfilled even for arbitrarily smooth u†− u0, but (3.9) with ϕ = ϕ̄p seems to be reasonable.
Since the examples from Chapter 2 have all in common that the corresponding operators
map arbitrary rough functions to analytic or at least arbitrary smooth functions, we ex-
pect for all these problems only weak source conditions (e.g. (3.9) with ϕ = ϕ̄p) to hold,
but Hölder-type source conditions to be much too restrictive. Thus our theory focuses on
the case of general ϕ including the weak cases.

Variational inequalities

A range condition like (3.9) is limited to the case where X and Y are Hilbert spaces,
since otherwise no functional calculus is available. To overcome this lack, HOFMANN

ET AL. [HKPS07] introduced variational inequalities in additive form, which means an
assumption of the following type:

ASSUMPTION 3.15 (ADDITIVE VARIATIONAL INEQUALITY):
There exists u∗ ∈ ∂R

(
u†) ⊂ X′, a parameter β ∈ [0, 1) and an index function ϕ where ϕ2 is

concave such that〈
u∗, u† − u

〉
≤ βDu∗

R

(
u, u†

)
+ ϕadd

(
S
(

F (u) ; g†
))

for all u ∈ B. (3.11)
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The original additive formulation in [HKPS07] deals only with the case ϕadd = ϕ 1
2
,

which we will point out to be a case of special interest later on. The same assumption
is used by SCHERZER ET AL. [SGG+08] to derive convergence rates for Tikhonov-type
regularization. The case of a general index function ϕadd was first treated by BOŢ &
HOFMANN [BH10], who used a general form of Young’s inequality to prove convergence
rates in this general case. Moreover, HOFMANN & YAMAMOTO [HY10] prove equiva-
lence of (3.11) with ϕadd = ϕ 1

2
and (3.9) in the Hilbert space case for ϕ = ϕ 1

2
under

a suitable nonlinearity condition and give a simple motivation of Assumption 3.15 for
Hölder-type source conditions. Moreover, they show that (3.11) is somehow limited to
the case that ϕ2

add is concave, since (3.11) with ϕadd = ϕν for some ν > 1
2 implies u∗ = 0 in

the quadratic Hilbert space setting. For non-quadratic norm powers the concavity of ϕ2
add

is an additional restriction. The singular case that S (g; ĝ) = ‖g− ĝ‖Y and ϕadd (s) = cs
with some c > 0 is for example not covered by our work, but since the Kullback-Leibler
divergence is bounded from below by the square of a norm as we will see in Chapter 4
this is not of interest for us. We refer to [Fle11, Prop. 4.14] for this situation.
PÖSCHL adapted the concept of variational inequalities to the case that S is not given by
the power of some norm and proved convergence rates. Also GRASMAIR [Gra10a] used
this concept. Finally, FLEMMING [Fle10] (see also [FH10, Fle11]) not only uses additive
variational inequalities to prove convergence rates for Tikhonov-type regularization (3.2)
with general S and R, but moreover presents a general connection from spectral source
conditions to variational inequalities which will be pointed out in the following.
Note that we do not use some constant β̃ in front of the second term in (3.11), since
this can be overcome by redefining ϕadd. Moreover, this would not change the rate of
convergence, as we will see in our analysis. Thus, only the asymptotic behavior of ϕadd
as the argument tends to 0 is of interest. For the important cases of Hölder-type and
logarithmic source conditions, we will often write that ϕadd is given by ϕν or ϕ̄p as in
(3.10a) or (3.10b) respectively, which means that there exists some constant c > 0 such
that ϕadd = c · ϕν and so on.
For the formulation of implications between different smoothness concepts as well as
convergence rates, we need the Fenchel conjugate Φ∗ of a real valued function Φ.

DEFINITION 3.16 (CONJUGATE FUNCTION):
Let Φ : (∞, ∞) → (−∞, ∞] be a function defined on the real line. Then the Fenchel conjugate
Φ∗ is defined by

Φ∗ (s) = sup
σ∈R

(σs−Φ (σ)) , s ∈ (−∞, ∞) .

The function Φ∗ is always convex as supremum over the affine linear (and hence convex)
functions s 7→ σs−Φ (σ).

REMARK 3.17:
If a function χ : [0, ∞)→ (−∞, ∞) is given, then we may extend χ by the value ∞ also to
the negative real line and are hence able to calculate the Fenchel conjugate by

χ∗ (s) = sup
σ∈R

(σs− χ (σ)) = sup
σ≥0

(σs− χ (σ)) , s ∈ (−∞, ∞) .

If we consider especially the convex function −ϕadd (and its extension to R), then the
Fenchel conjugate is given by

(−ϕadd)
∗ (s) = sup

σ≥0
(σs + ϕadd (σ))

which attains finite values for s < 0.
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Chapter 3: Tikhonov-type regularization

In the following theorem we will give explicit formulas to calculate ϕadd from ϕ. This
is done for the sake of completeness and to convince the reader that both smoothness
concepts are connected in the general case. Nevertheless, the following theorem and
lemma are not necessary to understand this thesis and may hence be skipped in first
reading.

THEOREM 3.18 (VALIDITY OF ADDITIVE VARIATIONAL INEQUALITIES):
Assume that F = T : X → Y is a bounded linear operator between Hilbert spaces X and Y and
letR (u) = ‖u− u0‖2

X and S (g; ĝ) = ‖g− ĝ‖2
Y. Moreover let a spectral source condition (3.9)

hold true for some index function ϕ such that ϕ2 is concave. Then Assumption 3.15 is fulfilled
with

d (r) := min
{∥∥∥u† − (T∗T)

1
2 ω
∥∥∥

X

∣∣ ω ∈ X, ‖ω‖X ≤ r
}

,

Dβ (r) =
1

2 (1− β)
d2 (r) ,

ϕadd (σ) = −D∗β (−σ) .

Note that the parameter β ∈ [0, 1) can be chosen in this linear setup!

PROOF:
See [Fle11, Cor. 13.7 and 13.8]

The question is how to calculate the distance function d, which measures the degree of

violation of the benchmark source condition u† = (T∗T)
1
2 ω or equivalently u† = T∗ω̄.

We will now give two possibilities to calculate d:

LEMMA 3.19 (SEE [FLE11, THM. 13.10]):
Let T be a compact and injective linear operator between Hilbert spaces X and Y and assume that

(3.9) is fulfilled, but u† /∈ R
(
(T∗T)

1
2

)
. Assume moreover that ‖ω‖ = 1.

• If f : t 7→
√

t
ϕ(t) (with the definition f (0) := 0) is an index function, then

d (r) ≤ r

√
f−1

(
1
r

)
for all sufficiently large r.

• If ϕ2 is concave, then
d (r) ≤

(
−ϕ ◦ ·2

)∗
(−r)

for all r ≥ 0.

PROOF:
This follows from [Fle11, Thm. 13.10] with ψ (t) =

√
t.

The function ϕadd has been calculated explicitly in the most important cases of Hölder-
type and logarithmic source conditions. We will present a calculation for Hölder-type
source conditions and cite the result for logarithmic source conditions in the following.
But next, we need an implication of spectral source conditions in Hilbert spaces:
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3.2: Source conditions and convergence rates

LEMMA 3.20:
Let X and Y be Hilbert spaces, S

(
g; gobs) = ∥∥g− gobs

∥∥2
Y

andR (u) = ‖u− u0‖2
X and assume

that (3.9) holds true with some index function ϕ such that φ :=
(

ϕ2)−1 is convex. Then the
following variational inequality is valid:

∣∣∣〈u∗, u† − u
〉∣∣∣ ≤ 2 ‖ω‖X

∥∥∥u− u†
∥∥∥

X
ϕ

(∥∥F′
[
u†] (u− u†)∥∥2

Y

‖u− u†‖2
X

)
for all u ∈ X . (3.12)

PROOF:
First note that u∗ = 2

(
u† − u0

)
since R (u) = ‖u− u0‖2

X. Let σ = σ
(

F′
[
u†]∗ F′

[
u†])

denote the spectrum and (Eλ)λ∈σ the spectral family of F′
[
u†]∗ F′

[
u†]. Using the self-

adjointness of ϕ
(

F′
[
u†]∗ F′

[
u†]) we find

∣∣∣〈u∗, u† − u
〉∣∣∣ = 2

∣∣∣〈u† − u0, u† − u
〉∣∣∣

= 2
∣∣∣〈ω, ϕ

(
F′
[
u†
]∗

F′
[
u†
]) (

u† − u
)〉∣∣∣

≤ 2 ‖ω‖X

∥∥∥ϕ
(

F′
[
u†
]∗

F′
[
u†
]) (

u† − u
)∥∥∥

X

where we used the Cauchy-Schwarz inequality. Moreover, using the integral representa-
tions

∥∥∥ϕ
(

F′
[
u†
]∗

F′
[
u†
]) (

u† − u
)∥∥∥2

Y
=
∫
σ

ϕ2 (λ) d
∥∥∥Eλ

(
u† − u

)∥∥∥2
,

∥∥∥u− u†
∥∥∥2

X
=
∫
σ

d
∥∥∥Eλ

(
u† − u

)∥∥∥2

we find

∣∣∣〈u∗, u† − u
〉∣∣∣ ≤ 2 ‖ω‖Y

(∫
σ

ϕ2 (λ) d
∥∥∥Eλ

(
u† − u

)∥∥∥2
) 1

2

= 2 ‖ω‖X

∥∥∥u− u†
∥∥∥

X

∫σ ϕ2 (λ) d
∥∥Eλ

(
u† − u

)∥∥2∫
σ

d ‖Eλ (u† − u)‖2


1
2

= 2 ‖ω‖X

∥∥∥u− u†
∥∥∥

X

φ−1

φ

∫
σ

ϕ2 (λ)
d
∥∥Eλ

(
u† − u

)∥∥2∫
σ

d ‖Eλ (u† − u)‖2





1
2

.

Since the measure
d‖Eλ(u†−u)‖2∫
σ d‖Eλ(u†−u)‖2 on the right-hand side is a probability measure, φ is

convex by assumption and φ−1 is monotonically increasing, we can now apply Jensen’s
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inequality to find

∣∣∣〈u∗, u† − u
〉∣∣∣ ≤ 2 ‖ω‖Y

∥∥∥u− u†
∥∥∥

X
ϕ

∫
σ

φ
(

ϕ2 (λ)
) d

∥∥Eλ

(
u† − u

)∥∥2∫
σ

d ‖Eλ (u† − u)‖2



= 2 ‖ω‖X

∥∥∥u− u†
∥∥∥

X
ϕ


∫
σ

λ d
∥∥Eλ

(
u† − u

)∥∥2

‖u− u†‖2
X

 .

Now the assertion follows from

∫
σ

λ d
∥∥∥Eλ

(
u† − u

)∥∥∥2
=

∥∥∥∥∥(F′
[
u†
]∗

F′
[
u†
]) 1

2
(

u† − u
)∥∥∥∥∥

2

X

=
∥∥∥F′

[
u†
] (

u− u†
)∥∥∥2

Y
.

With the help of this result, we can prove an optimal implication for the case of Hölder-
type source conditions:

LEMMA 3.21 (SEE ALSO [HY10, PROP. 6.6] OR [FLE11, SEC. 13.5.1]):
Assume that F = T is a linear operator between Hilbert spaces X and Y and let S

(
g; gobs) =∥∥g− gobs

∥∥2
Y

and R (u) = ‖u− u0‖2
X. Then a range condition (3.9) with ϕ = ϕν from (3.10a)

for ν ∈
(
0, 1

2

]
implies an additive variational inequality (3.11) with arbitrary β ∈ (0, 1) and

ϕadd = β̄ϕκ where κ = 2ν
2ν+1 and β̄ > 0 is some constant.

PROOF:
If ν = 1

2 , then the assertion is obvious by Lemma 3.20. For ν < 1
2 we insert the special

structure ϕ = ϕν into the result (3.12) of Lemma 3.20 to obtain∣∣∣〈u∗, u† − u
〉∣∣∣ ≤ 2 ‖ω‖X

∥∥∥u− u†
∥∥∥1−2ν

X

∥∥∥F (u)− g†
∥∥∥2ν

Y
, for all u ∈ X .

Using a modification of Young’s inequality

ab =

(
ε

2 ‖ω‖X

) 1
p

a ·
(

2 ‖ω‖X

ε

) 1
p

b ≤ ε

2 ‖ω‖X

ap

p
+

(
2 ‖ω‖X

ε

) q
p bq

q
,

1
p
+

1
q
= 1

with p = 2
1−2ν , q = 2

1+2ν this yields

∣∣∣〈u∗, u† − u
〉∣∣∣ ≤ ε

1− 2ν

2

∥∥∥u− u†
∥∥∥2

X
+ (1 + 2ν)

(
2 ‖ω‖X

ε

) 1+2ν
1−2ν

‖ω‖X

∥∥∥F (u)− g†
∥∥∥ 4ν

1+2ν

for all u ∈ X. Now choose ε such that ε 1−2ν
2 = β and obtain the assertion.

In case of logarithmic source conditions, the result reads as follows:

LEMMA 3.22:
Assume that F = T is a compact and injective linear operator between Hilbert spaces X and

Y and let S
(

g; gobs) =
∥∥g− gobs

∥∥2
Y

and R (u) = ‖u− u0‖2
X. Then a range condition (3.9)

with ϕ = ϕ̄p from (3.10b) for p ∈ (0, ∞) implies an additive variational inequality (3.11) with
arbitrary β ∈ (0, 1) and ϕadd = β̄ϕ̄2p where β̄ > 0 is some constant.
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3.2: Source conditions and convergence rates

PROOF:
This is done by using the result of Lemma 3.19 and Theorem 3.18. For the details see
[Fle11, Sec. 13.5.2].

The additive variational inequality (3.11) has the advantage that even for nonlinear F
the given formulation is meaningful and no Fréchet derivative of F is required. If (3.9)
holds true, then we find as above an additive variational inequality where S

(
F (u) ; g†) =∥∥F (u)− g†

∥∥2
Y

in the quadratic Hilbert space case is replaced by
∥∥F′

[
u†] (u− u†)∥∥2

Y
. This

formulation makes explicit usage of the Fréchet derivative F′ of F. It we want to derive
(3.11) in this context, an additional nonlinearity condition on F is needed. A widely
used assumption especially for the analysis of iterative methods is the tangential cone
condition:

ASSUMPTION 3.23 (TANGENTIAL CONE CONDITION):
There exists a constant η̄ > 0 such that∥∥F (v)− F (u)− F′ [u] (v− u)

∥∥
Y
≤ η̄ ‖F (v)− F (u)‖Y (3.13)

for all u, v ∈ B.

If Assumption 3.23 holds true, then by the second triangle inequality∥∥∥F′
[
u†
] (

u− u†
)∥∥∥

Y
≤ (1 + η̄)

∥∥∥F (u)− F
(

u†
)∥∥∥

Y
(3.14)

and hence we may replace
∥∥F′

[
u†] (u− u†)∥∥

Y
by
∥∥F (u)− F

(
u†)∥∥

Y
only loosing some

constant. This shows that in the nonlinear case Assumption 3.15 can be seen as a combi-
nation of a source and a nonlinearity condition which is weaker than both assumptions
together.
We do not discuss the nonlinearity condition (3.13) here, this will be done in Section 6.1,
where also a generalization will be presented.

As we have seen in Lemma 3.20, from a Hilbert space setting a multiplicative variational
source condition is easier to derive. Therefore, also variational inequalities in multiplica-
tive form have been proposed by KALTENBACHER & HOFMANN [KH10]. The following
assumption is a variation of the one proposed in [KH10], which avoids Fréchet deriva-
tives of F and hence additive assumptions as the tangential cone condition which links
them to F:

ASSUMPTION 3.24 (MULTIPLICATIVE VARIATIONAL INEQUALITY):
There exists u∗ ∈ ∂R

(
u†) ⊂ X′, β ≥ 0 and a concave index function ϕmult : (0, ∞) → (0, ∞)

such that

〈
u∗, u† − u

〉
≤ βDu∗

R

(
u, u†

) 1
2

ϕmult

(
S
(

F (u) ; g†)
Du∗
R (u, u†)

)
for all u ∈ B. (3.15)

Moreover assume that ϕmult is such that

σ 7→ ϕmult (σ)√
σ

is monotonically decreasing. (3.16)
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Chapter 3: Tikhonov-type regularization

To motivate Assumption 3.24, one simply inserts (3.13) into (3.12) and generalizes the
data misfit and the penalty.

The additional condition (3.16) restricts the possible index functions ϕmult in a similar
way as requiring that ϕ2

add is concave in Assumption 3.15 does. For example, if we think
of Hölder-type variational inequalities, i.e. ϕmult (t) = tν, ν must be less or equal 1

2 . For
additive variational inequalities (3.11) it is known from HOFMANN & YAMAMOTO that
in case of a norm power S (g; ĝ) = ‖g− ĝ‖p

Y
the exponent for Hölder-type functions

ϕadd = ϕν in (3.11) is limited to ν ≤ 1
p if u∗ 6= 0 (cf. [HY10, Prop. 4.3]). Note that this

range is not covered completely by our requirements, since ϕ2
1
p

is concave if and only

if p ≥ 2. Thus for higher norm powers we are restricted to weaker source conditions.
Nevertheless our theory can be extended to those cases by some simple changes. But
since we are mainly interested in the Kullback-Leibler divergence as data fidelity term
we restricted ourselves to these cases which are sufficient as we will see in Chapters 4
and 7.
Our motivation for nonlinear operators uses only the tangential cone condition so far,
but in case of ϕ = ϕ 1

2
we expect that a tangential cone condition is not necessary for

proving convergence rates. In the Hilbert space case (cf. for example [EHN96, Sec. 10]),
a Lipschitz estimate on F′ [·] is sufficient. It has already been proven by SCHERZER ET

AL [SGG+08, Prop 3.35] that Assumption (3.15) with ϕadd = ϕ 1
2

is valid in the Hilbert
space setup if (3.9) with ϕ = ϕ 1

2
and the Lipschitz estimate

∥∥F (v)− F (u)− F′ (u; v− u)
∥∥

Y
≤ L

2
‖v− u‖2

X (3.17)

on a sufficiently large set with L
2 ‖ω‖ < 1 hold true. To be more specific, in this setup

Assumption (3.15) holds true with ϕadd = ϕ 1
2

and the set B where (3.17) is valid. It
has been moreover shown by FLEMMING AND HOFMANN [FH11] that for convex B and
(3.13) as nonlinearity assumption the condition (3.9) with ϕ = ϕ 1

2
can be relaxed to a

projected source condition

u† = PB

(
u0 + F′

[
u†
]∗

ω
)

(3.18)

where PB : X → X denotes the metric projector onto B. The converse implication also
holds true if B contains inner points. Moreover the nonlinearity condition can be relaxed
to the Lipschitz assumption (3.17) if L

2 ‖ω‖ < 1.

Comparison and limitations

Let us discuss some limitations of source conditions. In the quadratic Hilbert space case
is has been proven by MATHÉ & HOFMANN [MH08] that any u† ∈ X fulfills a source
condition of the form (3.9) for a suitable index function ϕ (which depends on u†). Note
that the decay of ϕ (t) as t↘ 0 might be arbitrary slow in accordance with [EHN96, Prop.
3.11]. This fact has two main implications: On the one hand, a convergence analysis for
linear F under a spectral source condition (3.9) and hence under a variational inequality
(3.15) or (3.11) with general ϕ provides rates of convergence for any unknown solution
u†. If F is nonlinear, the crux of the matter lies in the fulfillment of a nonlinearity con-
dition. On the other hand, since also the source element ω in (3.9) fulfills again a source
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3.2: Source conditions and convergence rates

condition, the equation (3.9) is not able to cover the whole smoothness of u†. In that
sense, any proven convergence rate is elementwise1 suboptimal.
So far it is unknown if a similar result holds true also in the general case where As-
sumption 3.15 is seen as source condition, i.e. it has not been proven that for arbitrary
u† and linear F an inequality like (3.11) holds true. Nevertheless, it has been shown
by FLEMMING, HOFMANN & MATHÉ [FHM11] that Assumption 3.15 covers the whole
smoothness of u† and leads to elementwise optimal convergence rates. This is the best
possible result, but the proof so far uses concepts of approximate source conditions and
approximate variational inequalities, which we do not introduce in this work.
An overview over the different smoothness concepts is shown in Table 3.1.

linear operator tangential cone
condition (3.13)

Lipschitz condition
(3.17)

(3.9) with general
ϕ

Assumptions 3.15
and 3.24 hold true

Assumptions 3.15
and 3.24 hold true

Unknown

(3.9) with ϕ = ϕ 1
2

Assumptions 3.15
and 3.24 hold true

Assumptions 3.15
and 3.24 hold true

Assumption 3.15
holds true if
L
2 ‖ω‖ < 1

Projected source
condition (3.18)

Assumptions 3.15
and 3.24 hold true

Assumption 3.15
holds true

Assumption 3.15
holds true if
L
2 ‖ω‖ < 1

Table 3.1: Sufficient conditions for the validity of variational inequalities in the quadratic
Hilbert space case where S (g; ĝ) = ‖g− ĝ‖2

Y and R (u) = ‖u− u0‖2
X for

Hilbert norms ‖·‖X and ‖·‖Y.

3.2.2 General convergence theorems

In this subsection we will present and prove two general results on convergence rates
for Tikhonov-type regularization (3.2). The first result provides rates of convergence
under Assumption 3.24, the second under Assumption 3.15. KALTENBACHER & HOF-
MANN [KH10] have proven rates of convergence for the iteratively regularized Gauss-
Newton method under a condition similar to Assumption 3.24 (see Chapter 5), and our
proof for Tikhonov-type regularization uses the same techniques. Before we are able to
prove convergence rates under Assumption 3.24 we need to define the corresponding
rate functions:
DEFINITION 3.25 (RATE FUNCTION):
Let ϕmult : (0, ∞) → (0, ∞) be some index function. For multiplicative variational inequalities
as in Assumption 3.24 the function

Θ (t) := t · ϕ2
mult (t) , t > 0 (3.19)

is called rate function. Moreover we denote ϑ =
√

Θ.

1Optimality is usually meant w.r.t. some class M of exact solutions u†, and the known convergence rates
results obtain the best possible convergence rates under the assumption that u† belongs to the class. Never-
theless, for any specific u† there exists a better convergence rate, and this rate is obtained under (3.11). This
is meant by ’elementwise’ optimality and suboptimality.
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Chapter 3: Tikhonov-type regularization

Note that Θ, ϑ, Θ−1 and ϑ−1 are again index functions.

LEMMA 3.26 (ADDITIONAL PROPERTIES OF ϕmult AND Θ, CF. [KH10, REM. 2]):
Let ϕmult as in Assumption 3.24.

(a) We have

ϕmult

(
ϑ−1 (Ct)

)
≤ max

{√
C, 1

}
ϕmult

(
ϑ−1 (t)

)
(3.20)

ϕ2
mult

(
Θ−1 (Ct)

)
≤ max

{√
C, 1

}
ϕ2

mult

(
Θ−1 (t)

)
(3.21)

for all t ≥ 0 and C > 0.

(b) It holds
ϕmult (λt) ≤ λϕmult (t) for all t > 0 and λ ≥ 1 (3.22)

(c) For all t > 0 and λ ≥ 1 the following inequality holds:

Θ (λt) ≤ λ3Θ (t) (3.23)

PROOF:
(a) Let us denote σ = ϑ (t). Then

ϕmult
(
ϑ−1 (t)

)
√

t
=

ϕmult (σ)√
ϑ (σ)

=
ϕmult (σ)√√

σϕmult (σ)
=

√
ϕmult (σ)√

σ

and the right-hand side of this equation is by (3.16) monotonically decreasing.
Therefore

ϕmult
(
ϑ−1 (Ct)

)
√

Ct
≤

ϕmult
(
ϑ−1 (t)

)
√

t

whenever C ≥ 1 and hence ϕmult
(
ϑ−1 (Ct)

)
≤
√

Cϕmult
(
ϑ−1 (t)

)
. For C ≤ 1, is

follows from the monotonicity of ϕmult and ϑ−1 that (3.20) also holds true.

The second inequality is obtained in the same way.

(b) By Assumption 3.24 ϕmult is concave and hence the assertion follows directly from
ϕmult (0) = 0.

(c) Since Θ (t) = t · ϕ2
mult (t) by definition (3.19), we obtain the assertion by using

(3.22).

LEMMA 3.27:
Assume that an inequality of the type

αa +
1

C1
b ≤ αC2

√
aϕmult

(
b
a

)
holds true for all α > 0 and some concave index function ϕmult fulfilling (3.16), where C1, C2 > 0
are some constants and a and b are non-negative functions of α > 0. Then a and b fulfill

a ≤ C
3
2
1 C2

2 ϕ2
mult (α) ,

b ≤ C3
1C3

2αϕ2
mult (α)

for all α > 0.
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PROOF:
Multiplying the given inequality with

√
b/a leads to

α
√

b +
1

C1

b
a

√
b ≤ C2αϑ

(
b
a

)
.

By considering only the first and the second term on the left-hand side this yields

ϑ−1

(√
b

C2

)
≤ b

a
, (3.24)

Φ
(

b
a

)√
b ≤ C1C2α

respectively, where Φ (t) = t/ϑ (t) =
√

t/ϕmult (t). Since Φ is monotonically increasing
by (3.16), we can combine these two inequalities to

Φ

(
ϑ−1

(√
b

C2

))
√

b ≤ C1C2α.

Now note that Φ
(
ϑ−1 (t)

)
= ϑ−1 (t) /t and find

ϑ−1

(√
b

C2

)
≤ C1α.

This shows by using (3.22) that
√

b ≤ C2ϑ (C1α) ≤ C
3
2
1 C2

√
αϕmult (α)

and hence
b ≤ C3

1C2
2αϕ2

mult (α)

for all α > 0. Moreover, using (3.24) and s2
(

ϕmult

(
ϑ−1

(√
t

s

)))2
= t/ϑ−1

(√
t

s

)
we get

a ≤ b

ϑ−1
(√

b
C2

) = C2
2

(
ϕmult

(
ϑ−1

(√
b

C2

)))2

.

Now we use the result on b and (3.20) to find

a ≤ C2
2

(
ϕmult

(
ϑ−1

(
C

3
2
1 C2

√
αϕmult (α)

)))2

≤ C
3
2
1 C3

2 ϕ2
mult (α) .

This proves the assertion.

Now we are able to formulate and prove a convergence rates result under Assumption
3.24 for Tikhonov-type regularization (3.2):

THEOREM 3.28 (CONVERGENCE RATES UNDER ASSUMPTION 3.24):
Let Assumptions 3.8 and 3.24 hold. Then any choice of minimizers uα from (3.2) fulfills

Du∗
R

(
uα, u†

)
= O

(
ϕ2

mult (α)
)

, (3.25a)

S
(

F (uα) ; g†
)
= O (Θ (α)) (3.25b)
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as α↘ 0 for exact data and if we choose α such that err ∼ Θ (α) with err as in (3.8) and the rate
function Θ in case of noisy data the following convergence rates are valid:

Du∗
R

(
uα, u†

)
= O

(
ϕ2

mult

(
Θ−1 (err)

))
, (3.26a)

S
(

F (uα) ; g†
)
= O (err) (3.26b)

as err↘ 0.

PROOF:
Inserting Assumption 3.24 into the result of Lemma 3.14 we find

αDu∗
R

(
uα, u†

)
+

1
Cerr
S
(

F (uα) ; g†
)
≤ αβDu∗

R

(
u, u†

) 1
2

ϕmult

(
S
(

F (uα) ; g†)
Du∗
R (uα, u†)

)
+ err.

The parameter choice err ∼ Θ (α) implies that there exists some constant C > 0 such that
err ≤ CΘ (α). We insert this and distinguish between the following two cases:

• αβDu∗
R
(
u, u†) 1

2 ϕmult

(
S(F(uα);g†)
Du∗
R (uα,u†)

)
≤ CΘ (α). This yields

αDu∗
R

(
uα, u†

)
+

1
Cerr
S
(

F (uα) ; g†
)
≤ 2Cαϕ2

mult (α)

which immediately implies

Du∗
R

(
uα, u†

)
= O

(
ϕ2

mult (α)
)
= O

(
ϕ2

mult

(
Θ−1 (err)

))
S
(

F (uα) ; g†
)
= O

(
αϕ2

mult (α)
)
= O (err) .

• αβDu∗
R
(
u, u†) 1

2 ϕmult

(
S(F(uα);g†)
Du∗
R (uα,u†)

)
≥ CΘ (α). In this case we find

αDu∗
R

(
uα, u†

)
+

1
Cerr
S
(

F (uα) ; g†
)
≤ 2αβDu∗

R

(
u, u†

) 1
2

ϕmult

(
S
(

F (uα) ; g†)
Du∗
R (uα, u†)

)
.

Lemma 3.27 implies (3.25) and by again inserting err ∼ Θ (α) and using (3.22) we
find (3.26).

As opposed to the case of multiplicative variational inequalities, the proof of convergence
rates under Assumption 3.15 is not only easier, but also provides an error decomposition.

REMARK 3.29:
Consider the function fapp (s) := (−ϕadd)

∗ (− 1
s

)
, s > 0. We will show that this function is

a bound for the approximation error under Assumption 3.15, which has first been shown
by GRASMAIR [Gra10a]. Before doing so, let us collect some properties of fapp:

(a) fapp is monotonically increasing.

(b) It holds
fapp (Cs) ≤ max {1, C} fapp (s) (3.27)

for all s > 0, C > 0.
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(c) We have fapp (s)↘ 0 as s↘ 0.

PROOF:
(a) The monotonicity follows from the fact that both (−ϕadd)

∗ as well as s 7→ − 1
s , s > 0

are monotonically increasing.

(b) If C < 1, then the assertion is trivial due to (a). For C ≥ 1 we obtain from the
concavity of ϕ2

add and ϕadd (0) = 0 that

ϕadd (Cs) ≤
√

Cϕadd (s) for all s > 0.

Now using this and the definition, we obtain

(−ϕadd)
∗
(
− 1

Cs

)
= sup

σ≥0

(
− 1

Cs
σ− (−ϕadd) (σ)

)
= sup

σ≥0

(
ϕadd (σ)−

1
s

σ

C

)
= sup

σ̄=σ/C2≥0

(
ϕadd

(
C2σ̄

)
− 1

s
Cσ̄

)

≤ sup
σ̄≥0

(
Cϕadd (σ̄)− C

1
s

σ̄

)
= C sup

σ̄≥0

(
ϕadd (σ̄)−

1
s

σ

)
= C (−ϕadd)

∗
(
−1

s

)
.

(c) By Young’s inequality 〈s∗, s〉 ≤ Φ (s) + Φ∗ (s∗) where we have equality if and only
if s∗ ∈ ∂Φ (s) we can write

fapp (s) = ϕadd (σ (s))− σ (s)
s

for any choice σ (s) ∈ ∂ (−ϕadd)
∗ (− 1

s

)
. Note that s > 0 and hence also σ (s) > 0.

As above we have moreover ϕadd (σ) ≤ max
{√

σ, 1
}

ϕadd (1) for all σ > 0 by the
concavity of ϕ2

add. This yields

0 ≤ ϕadd (0) ≤ fapp (s) = ϕadd (σ (s))− σ (s)
s
≤ max

{√
σ (s), 1

}
ϕadd (1)−

σ (s)
s

and hence σ(s)

max
{√

σ(s),1
} ≤ ϕadd (1) s. Thus we find σ (s)↘ 0 as s↘ 0. This implies

finally

fapp (s) = ϕadd (σ (s))− σ (s)
s
≤ ϕadd (σ (s))↘ 0 as s↘ 0

and proves the claim.

Now we are able to provide the main convergence theorem under Assumption 3.15 for
Tikhonov-type regularization (3.2):
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THEOREM 3.30 (CONVERGENCE RATES UNDER ASSUMPTION 3.15):
Let Assumptions 3.8 and 3.15 hold true. Then for any choice of minimizers uα from (3.2) the error
decomposition

(1− β)Du∗
R

(
uα, u†

)
+

1
2Cerrα

S
(

F (uα) ; g†
)
≤ 2Cerr (−ϕadd)

∗
(
−1

α

)
+

err
α

(3.28)

is valid for any α > 0 where err is defined by (3.8) and for exact data it holds

Du∗
R

(
uα, u†

)
= O

(
(−ϕadd)

∗
(
−1

α

))
, (3.29a)

S
(

F (uα) ; g†
)
= O

(
α (−ϕadd)

∗
(
−1

α

))
(3.29b)

as α↘ 0. If we choose in case of noisy data α such that

τ

α
∈ −∂ (−ϕadd) (err) (3.30)

with a tuning parameter τ > 0 then the following convergence rate is valid:

Du∗
R

(
uα, u†

)
= O (ϕadd (err)) as err↘ 0. (3.31a)

Before proving this result, we want to comment on the parameter choice rule (3.30):

REMARK 3.31:
(a) Since ϕadd is assumed to be finite and concave, −ϕadd is finite and convex and thus
−ϕadd is continuous (see e.g. [ET76, Cor. 2.3]). Hence ∂ (−ϕadd) (s) 6= ∅ for all
s > 0 (see e.g. [ET76, Prop. 5.2]) and so a parameter α > 0 fulfilling (3.30) exists.

(b) If ϕadd is differentiable at s > 0, then ∂ (−ϕadd) (s) =
{
−ϕ′add (s)

}
and hence (3.30)

is equivalent to

α ∼ 1
ϕ′add (err)

.

(c) For concave ϕadd it is easy to see that the left- and right-hand sided derivatives
δ−ϕadd (s) = limh↘0

ϕadd(s)−ϕadd(s−h)
h and δ+ϕadd (s) = limh↘0

ϕadd(s+h)−ϕadd(s)
h exist

and that it holds

−∂ (−ϕadd) (s) = [δ+ϕadd (s) , δ−ϕadd (s)] (3.32a)

=

[
sup

σ∈(s,∞)

ϕadd (σ)− ϕadd (s)
σ− s

, inf
σ∈[0,s)

ϕadd (s)− ϕadd (σ)

s− σ

]
(3.32b)

where the last equality follows from the monotonicity of z 7→ ϕadd(x)−ϕadd(z)
x−z . Thus

our parameter choice is similar to the one proposed in [Fle11, Thm 4.11], and the
following properties are proven using FLEMMING’s arguments.

(d) If we choose α by (3.30), then by (3.32b)

err
α (err)

≤ err
τ

inf
σ∈[0,err)

ϕadd (err)− ϕadd (σ)

err− σ
≤ err

τ

ϕadd (err)
err

and thus err
α(err) ↘ 0 as err↘ 0.
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(e) Since ϕ2
add is concave we gain moreover α (err) ↘ 0 as err ↘ 0. To see this it

suffices to show that supσ∈(s,∞)
ϕadd(σ)−ϕadd(s)

σ−s ↗ ∞ as s↘ 0. If we had

sup
σ∈(t,∞)

ϕadd (σ)− ϕadd (t)
σ− t

≤ c for some c ∈ (0, ∞) and t ∈ (0, t0] , t0 > 0,

then for any s > 0 and t ∈ (0, min {s, t0}) we find

ϕadd (s)− ϕadd (t)
s− t

≤ sup
σ∈(t,∞)

ϕadd (σ)− ϕadd (t)
σ− t

≤ c.

Thus ϕadd (s) ≤ ϕadd (t) + c (s− t) and letting t ↘ 0 we find ϕadd (s) ≤ cs for all
s ∈ (0, ∞). But due to the concavity of ϕ2

add we have
√

sϕadd (1) ≤ ϕadd (s) for all
s ∈ [0, 1], which contradicts c < ∞. Thus the supremum tends to ∞ as s↘ 0.

Let us conclude with the proof of Theorem 3.30:

PROOF (OF THEOREM 3.30):
Plugging (3.11) into the result of Lemma 3.14 we find

α (1− β)Du∗
R

(
uα, u†

)
+

1
Cerr
S
(

F (uα) ; g†
)
≤ αϕadd

(
S
(

F (uα) ; g†
))

+ err.

Rearranging and dividing by α yields

(1− β)Du∗
R

(
uα, u†

)
+

1
2Cerrα

S
(

F (uα) ; g†
)

≤ϕadd

(
S
(

F (uα) ; g†
))
− 1

2Cerrα
S
(

F (uα) ; g†
)
+

err
α

= sup
σ≥0

(
ϕadd (σ)−

σ

2Cerrα

)
+

err
α

= (−ϕadd)
∗
(
− 1

2Cerrα

)
+

err
α

.

Using (3.27) this shows (3.28). In the case of exact data we have err ≡ 0 and hence (3.29)
follows immediately. In presence of noise note that the minimal value of the right-hand
side of (3.28) without the factor 2Cerr is given by

inf
α>0

(
err
α

+ (−ϕadd)
∗
(
−1

α

))
= − sup

ᾱ<0

(
err · ᾱ− (−ϕadd)

∗ (ᾱ)
)

= − (−ϕadd)
∗∗ (err)

= ϕadd (err) .

Since in Young’s inequality 〈s∗, s〉 ≤ Φ (s) + Φ∗ (s∗) we have equality if and only if s∗ ∈
∂Φ (s), this infimum is attained for any αopt fulfilling

1
αopt
∈ −∂ (−ϕadd) (err) .
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So for α as in (3.30) we have α = ταopt and hence by (3.27)

2Cerr (−ϕadd)
∗
(
−1

α

)
+

err
α
≤ 2Cerr max

{
τ,

1
τ

}(
err
αopt

+ (−ϕadd)
∗
(
− 1

αopt

))
= 2Cerr max

{
τ,

1
τ

}
ϕadd (err) .

This proves the assertion.

3.2.3 Special cases

Before we comment on the relations between our results and the classical results as well
as the more recent results from the literature, we will discuss the optimality of our results
and present the special cases of Hölder-type and logarithmic source conditions.

General optimality

We have already proven within Lemma 3.20 that a classical range condition (3.9) together
with a tangential cone condition implies a multiplicative variational inequality (3.15).
Consider the quadratic Hilbert space case where an upper bound δ ≥

∥∥g† − gobs
∥∥

Y for
the noise is given. Then MATHÉ AND PEREVERZEV [MP03] have shown that under (3.9)
the best possible rate for the error w.r.t. the norm is given by∥∥∥uα − u†

∥∥∥
X
= O

(
ϕ
(

ϑ−1 (δ)
))

(3.33)

with ϑ as in Definition 3.25 with ϕmult replaced by ϕ and that this rate can be achieved.
Since Lemma 3.20 shows that a classical range condition (3.9) together with a tangen-
tial cone condition implies a multiplicative variational inequality (3.15), we obtain in the
quadratic Hilbert space case from Theorem 3.28 the rate

Du∗
R

(
uα, u†

)
= O

(
ϕ2

mult

(
Θ−1 (err)

))
where err is given as in (3.8). Since then Du∗

R
(
uα, u†) =

∥∥uα − u†
∥∥2

X
and err = 3δ2, we

find from
Θ−1 (δ2) = ϑ−1 (δ)

that we also obtain the optimal rate (3.33) for S
(

g; gobs) =
∥∥g− gobs

∥∥2
Y

and R (u) =

‖u− u0‖2
X in case of Hilbert norms ‖·‖X and ‖·‖Y.

In the case of additive variational inequalities, the optimality is much more difficult. We
will see in the following that we obtain the optimal rates (3.33) for the case of Hölder-
type and logarithmic ϕ by calculating the obtained rates explicitly. FLEMMING [Fle11, Sec
12.6] states that the concept of additive variational inequalities (3.11) and classical range
conditions (3.9) yield the same rates for linear operators F = T in the sense that every
classical range condition (3.9) implies an additive variational inequality (3.11) with the
help of Theorem 3.18 and Lemma 3.19 such that the obtained convergence rates coincide.
But to our best knowledge, there is no direct proof for this proposition in the most general
case without using further smoothness concepts like approximate source conditions and
approximate variational inequalities.
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3.2: Source conditions and convergence rates

Hölder-type source conditions

Let us consider the special case of Hölder-type source conditions where the index func-
tion ϕ is given as in (3.10a). We will start by calculating the functions ϑ, Θ in this case. By
definition, it holds Θ (t) = tϕ2

ν (t) = t1+2ν for t ≥ 0. Hence,

ϑ (t) = t
1+2ν

2 , t ≥ 0,

Θ−1 (t) = t
1

1+2ν , t ≥ 0,

ϑ−1 (t) = t
2

1+2ν , t ≥ 0.

The optimal rate (3.33) mentioned above is therefore given by

ϕν

(
ϑ−1 (δ)

)
= δ

2ν
2ν+1 , as δ↘ 0. (3.34)

Now we are able to formulate the obtained convergence rates:

THEOREM 3.32 (CONVERGENCE RATES FOR HÖLDER-TYPE SOURCE CONDITIONS):
• Under the Assumptions of Theorem 3.28 with ϕmult = ϕν we obtain the convergence rate

Du∗
R

(
uα, u†

)
= O

(
err

2ν
1+2ν

)
, err↘ 0.

• Under the Assumptions of Theorem 3.30 with ϕadd = ϕκ we obtain the convergence rate

Du∗
R

(
uα, u†

)
= O (errκ) , err↘ 0.

PROOF:
This is obtained by plugging in the functions calculated above.

To be more specific, the convergence rates in the classical Hilbert space case are men-
tioned as corollary:

COROLLARY 3.33 (QUADRATIC HILBERT SPACE CASE):
Assume that S (g; ĝ) = ‖g− ĝ‖2

Y and R (u) = ‖u− u0‖2
X for Hilbert spaces X and Y and

assume that F = T : X → Y is a bounded linear operator. Then a range condition (3.9) with
ϕ = ϕν where ν ∈

(
0, 1

2

]
and a known upper bound

∥∥g† − gobs
∥∥

Y
≤ δ imply for a parameter α

chosen such that α = δ
2

2ν+1 the following convergence rates:∥∥∥u† − uα

∥∥∥
X
= O

(
δ

2ν
1+2ν

)
, δ↘ 0.

PROOF:
As already mentioned, Assumption 3.8 is fulfilled with err ≡ δ2, s ≡ 0 and Cerr = 2. The
term err from (3.8) is hence given by err = 3δ2 and the assumed range condition (3.9)
with ϕ = ϕν yields by Lemma 3.20 a multiplicative variational inequality (3.15) with
ϕmult = ϕν. To apply Theorem 3.28 we note that (3.16) is fulfilled for ν ∈

(
0, 1

2

]
and

that the parameter choice α = δ
2

2ν+1 coincides with the condition err ∼ Θ (α) from the
theorem. Therefore we obtain order optimal convergence rates (3.34).
By Lemma 3.21 also an additive variational inequality (3.11) with ϕadd = ϕκ where κ =

2ν
2ν+1 is valid since ν ∈

(
0, 1

2

]
and we hence are able to apply Theorem 3.30. Note that ϕ2

add

is concave. Since ϕ′add (t) = κtκ−1 = κt
−1

2ν+1 the parameter choice α ∼ 1
ϕ′add(err) = err

1
2ν+1

in that theorem also coincides with the parameter choice α = δ
2

2ν+1 . Therefore we obtain
order optimal convergence rates (3.34).
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Logarithmic source conditions

Let us consider the special case of logarithmic source conditions where the index func-
tion ϕ is given as in (3.10b). We will start by calculating the functions ϑ, Θ in this case. By
definition, it holds Θ (t) = tϕ̄2

p (t) = tϕ̄2p (t) for t ≥ 0. The function Θ−1 cannot be cal-
culated analytically, but its asymptotic behavior can be calculated by a simple inversion
argument:

Θ−1 (t) ∼ t
ϕ̄2p (t)

(1 + o (1)) , t↘ 0.

In conclusion we obtain

ϑ (t) =
√

tϕ̄p (t) , t ≥ 0,

ϑ−1 (t) ∼ t2

ϕ̄2p (t2)
(1 + o (1)) , t↘ 0.

The optimal rate (3.33) mentioned above is therefore given by

ϕ̄p

(
ϑ−1 (δ)

)
∼ ϕ̄p (δ) (1 + o (1)) , δ↘ 0. (3.35)

Now we are able to formulate the obtained convergence rates:

THEOREM 3.34 (CONVERGENCE RATES FOR LOGARITHMIC SOURCE CONDITIONS):
• Under the Assumptions of Theorem 3.28 with ϕmult = ϕ̄p we obtain the convergence rate

Du∗
R

(
uα, u†

)
= O

(
ϕ̄2p (err)

)
, err↘ 0.

• Under the Assumptions of Theorem 3.30 with ϕadd = ϕ̄p we obtain the convergence rate

Du∗
R

(
uα, u†

)
= O

(
ϕ̄p (err)

)
, err↘ 0.

PROOF:
This is obtained by plugging in the functions calculated above.

To be more specific, the convergence rates in the classical Hilbert space case are men-
tioned as corollary:

COROLLARY 3.35 (QUADRATIC HILBERT SPACE CASE):
Assume that S (g; ĝ) = ‖g− ĝ‖2

Y and R (u) = ‖u− u0‖2
X for Hilbert spaces X and Y and

assume that F = T : X→ Y is a bounded linear operator which is compact and injective. Then a
range condition (3.9) with ϕ = ϕ̄p where p ∈ (0, ∞) and a known upper bound

∥∥g† − gobs
∥∥

Y
≤

δ where the parameter α is chosen such that δ2 = αϕ̄2p (α) implies the following convergence
rates: ∥∥∥u† − uα

∥∥∥
X
= O

(
ϕ̄p (δ)

)
, δ↘ 0.

PROOF:
As already mentioned, Assumption 3.8 is fulfilled with err ≡ δ2, s ≡ 0 and Cerr = 2. The
term err from (3.8) is hence given by err = 3δ2 and the assumed range condition (3.9)
with ϕ = ϕ̄p yields by Lemma 3.20 a multiplicative variational inequality (3.15) with
ϕmult = ϕ̄p. To apply Theorem 3.28 we note that (3.16) is fulfilled trivially for any p and
that our parameter choice coincides with the one from the Theorem. Therefore we obtain
order optimal convergence rates (3.35).
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3.2.4 Related work

REMARK 3.36 (LINK TO CLASSICAL THEORY):
Convergence rates for Tikhonov regularization (3.3) with linear operator F = T under
Hölder-type source conditions are well-known and there exists a vast amount of litera-
ture on that. We refer to [EHN96, Sec. 5.1] for more information and mention that these
results are covered by ours as pointed out in Corollary 3.33.

Convergence rates for nonlinear Tikhonov regularization (i.e. (3.3) with possibly non-
linear F) have first been considered by ENGL, KUNISCH & NEUBAUER [EKN89] and
NEUBAUER [Neu89] in 1989. These results have been reformulated and collected in
[EHN96], where we will now link our theory to. [EHN96, Thm. 10.4] covers the case of a
Hölder-type source condition (3.9) with ϕ = ϕ 1

2
in combination with a Lipschitz estimate

and guarantees the rate
∥∥uα − u†

∥∥ = O
(√

δ
)

. Recalling that Du∗
R
(
u, u†) = ∥∥u− u†

∥∥2
X

in

that case and err = 3δ2 if
∥∥gobs − g†

∥∥
Y
≤ δ shows that our result from Theorem 3.30 coin-

cides with that rate. Theorem 3.28 also yields
∥∥uα − u†

∥∥ = O
(√

δ
)

and the assumptions
are valid due to Table 3.1 under the same conditions.

The case of logarithmic source conditions in the quadratic Hilbert space case has for ex-
ample been treated by HOHAGE [Hoh99, Thm. 3.14] where the optimal convergence rate
(3.35) is proven for linear operators T = F. General source conditions have been stud-
ied by HEGLAND [Heg95], where also the optimal rate is derived. Moreover, MATHÉ &
PEREVERZEV [MP03] provide a general convergence rates result for linear operators and
discuss the optimality.

REMARK 3.37 (TIKHONOV REGULARIZATION WITH GENERAL PENALTY TERM):
In the last decade one came up to replace the penalty ‖u− u0‖2

X by some arbitrary convex
functional R : X → (−∞, ∞]. In this context, one still considers S (g; ĝ) = ‖g− ĝ‖2

Y for
some Hilbert space Y, but X is allowed to be a Banach space. Possibly the first choice
was maximum entropy regularization where X is some space of non-negative functions
on [a, b] and

R (u) =
b∫

a

u (t) log
(

u (t)
u∗ (t)

)
dt

where u∗ ∈ X is some prior information (cf. [EHN96, Sec. 5.3]). In this case, the Bregman
distance is given by the Kullback-Leibler divergence (2.12b), i.e.

Du∗
R

(
u, u†

)
= KL

(
u; u†

)
.

Since the Kullback-Leibler divergence can be bounded from below by the L2-norm as we
will see in Lemma 4.5 it is not surprising that for this case convergence rates in norm
rather than w.r.t. the Bregman distance have been proven.
Another interesting case is

R (u) = sup


∫
Ω

udiv f dx
∣∣ f ∈ C1

0 (Ω) , ‖ f ‖∞ ≤ 1


which is referred to as total variation regularization (see e.g. [AV94, SGG+08] and the
references therein).
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The first convergence rates for Tikhonov-type regularization with general convex penalty
Rwere presented by BURGER & OSHER [BO04] who proved the rateDu∗

R
(
uα, u†) = O (δ)

under the source condition

∃ u∗ ∈ ∂R
(

u†
)

such that u∗ = F∗ω for some ω ∈ Y . (3.36)

for linear F. Since F∗ maps Y to X∗ and the dual space X∗ of X differs from X, the
condition (3.9) with ϕ = ϕ 1

2
had to be generalized. It is well-known that in a Hilbert space

setting R
(
(F∗F)

1
2

)
= R (F∗) and hence (3.9) with ϕ = ϕ 1

2
has the equivalent formulation

u† − u0 = F∗ω̄ for some other source element ω̄ ∈ Y. Moreover, if R (u) = ‖u− u0‖2
X

then ∂R
(
u†) = u† − u0 which shows that (3.36) is a suitable generalization and can be

interpreted as a Hölder-type source condition with ν = 1
2 . One can easily see, that (3.36)

also implies a variational inequality with ϕadd = ϕ 1
2

(cf. for example [SGG+08, Prop.
3.35]). Hence, the results of Theorem 3.28 and Theorem 3.30 cover the ones by BURGER

& OSHER.
In 2005, RESMERITA [Res05] proved higher order convergence rates for general convexR
and linear F under the source condition

∃ u∗ ∈ ∂R
(

u†
)

such that u∗ = F∗Fω for some ω ∈ X

which corresponds to a Hölder-type source condition with ν = 1. This case is not covered
by our work.
As already mentioned before, the book by SCHERZER ET AL. [SGG+08] also uses vari-
ational inequalities to provide the rate Du∗

R
(
uα, u†) = O (δ) for nonlinear F under a

Hölder-type source condition with ν = 1
2 and a generalized Lipschitz condition. Since

in that case (3.11) and (3.15) coincide, this result is covered both by Theorem 3.28 and
Theorem 3.30.
Note that in general multiplicative and additive variational inequalities to not coincide!

REMARK 3.38 (TIKHONOV REGULARIZATION WITH GENERAL DATA MISFIT TERM):
As already mentioned, the most general case (3.2) has been studied in detail by PÖSCHL

[Pös08], where also the rate Du∗
R
(
uα, u†) = O (δ) under the variational inequality〈

u∗, u† − u
〉
≤ βDu∗

R

(
u, u†

)
+ S

(
F (u) ; g†

)
for all u ∈ B

has been proven. In this publication, the more simple noise level S
(

g†; gobs) ≤ δ has
been considered, which is sufficient due to the fact that the author assumed S to fulfill
a triangle inequality. Since our noise model generalizes this assumptions, Theorem 3.28
and Theorem 3.30 cover this result.
As a next step, FLEMMING & HOFMANN [FH10] provided convergence rates for more
general additive variational source conditions (3.11) with ϕadd = ϕν, but still S had to
fulfill a triangle-type inequality. The case ν = 1

2 is again covered by Theorem 3.28 and
Theorem 3.30, the more general cases ν 6= 1

2 are connected to our Theorem 3.30 up to
differences in the used noise models.
Finally, FLEMMING [Fle10] generalizes the results from [FH10] to general data misfit
terms S which do no longer have to fulfill a triangle-type inequality and general ad-
ditive variational inequalities (3.11). These results are collected in [Fle11] and differ from
ours in the definition of the noise level. We overcome the problem of having no triangle
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inequality at hand by generalizing the noise model to (3.4), whereas FLEMMING assumes
that S is bounded from below by some data misfit functional fulfilling a triangle-type
inequality and uses only the noise level

S
(

g†; gobs
)
≤ δ. (3.37)

Obviously, our noise level (3.4) with err ≡ δ implies (3.37), but is even more restric-
tive. On the other hand, we use the true data misfit functional in the source conditions,
whereas he has to assume that the variational inequality holds with S replaced by the
lower bound. From that point of view, his source conditions are stronger.
In his PhD thesis [Fle11] he proves moreover that his convergence analysis leads to order
optimal convergence rates especially for Hölder-type and logarithmic source conditions
in the quadratic Hilbert space case (cf. Section 3.2.3).

REMARK 3.39 (REGULARIZATION WITH SPARSITY CONSTRAINTS):
The choice

Rsp (u) := ∑
i∈I

wi |〈u, φi〉|q , u ∈ X (3.38)

where {φi}i∈I is some orthonormal basis of the Hilbert space X is referred to as regular-
ization with sparsity constraints. This type of regularization has been studied somehow
independent of generalized Tikhonov regularization, but due to the obvious relations to
the publications [BO04, Res05] and other ones, there have always been cross connections
to the theory presented above. The functional (3.38) is known to be sparsity enforcing for
q ≤ 1 in the sense that the regularized solutions have only finitely many non-zero compo-
nents w.r.t. to the orthonormal basis {φi}i∈I (cf. [Gra09a]). An iterative approach to com-
pute the minimizers of the Tikhonov functional with S (g; ĝ) = ‖g− ĝ‖2

Y and R = Rsp

where q = 1 has been considered in [DDD04], and another method for q < 1 has been
proposed by ZARZER [Zar09]. Note that the functional (3.38) is convex if and only if
q ≥ 1, but the most interesting case is q = 0 or at least q > 0 as small as possible. An
introductory overview on regularization with sparsity constraints is given in [SGG+08].
Since one is interested rather in convergence rates w.r.t. some norm than in rates w.r.t.
the Bregman distance, the results [BO04,Res05] have not been considered satisfactory. In
2008 LORENZ [Lor08] and GRASMAIR, HALTMEIER & SCHERZER [GHS08] proved rates
of convergence w.r.t. l1-norm or the l2-norm of the coefficients, respectively. Later on,
these results where improved and generalized in the group of SCHERZER, especially by
GRASMAIR:
In [Gra09b] the author studies regularization with 0 < q < 1 in (3.38) and proves con-
vergence rates w.r.t. the l1-norm, in [Gra10b, Gra10a] the author generalizes the former
results to non-convexR by introducing a notation of generalized convexity, which some-
how applies to the ’sparsest’ case q = 0 in (3.38) up to some changes. The results pre-
sented there are no longer limited to the sparse case, they also apply for Tikhonov-type
regularization (3.2) with S fulfilling a triangle-type inequality and non-convex penalty
R; convergence rates are shown under a general additive source condition w.r.t. a gener-
alized Bregman distance.
Moreover, in [GHS11] the authors study also necessary conditions for convergence rates
in regularization with sparsity constraints, which has not been done in the general setting
(3.2).
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3.3 A Lepskĭı-type balancing principle

The aim of this section is to provide a parameter choice rule α, such that α is determined
in an adaptive way during the reconstruction procedure. This is of special interest in
the case that ϕadd (and hence the smoothness of u†) is unknown, but one still wants to
achieve the optimal convergence rate.
For the whole section we will assume that there exists some uniform upper bound err > 0
for the errors defined in (3.8), i.e.

err ≥ sup
α>0

(
err (F (uα)) + Cerrerr

(
g†
))

. (3.39)

The Lepskiı̆ principle was developed by LEPSKIĬ [Lep90] in a statistical context. It has
first been used for inverse problems with deterministic noise by MATHÉ & PEREVERZEV

[MP03]. The way we present it here follows the work of MATHÉ [Mat06], where it is
exhibited from a very general point of view.
Let x ∈ M be some unknown element in a metric space (M, d) which we try to approxi-
mate by several other elements {x1, ..., xm}. Assume moreover that the error decomposi-
tion

d
(

x, xj
)
≤ 1

2
(φ (j) + ψ (j)) for all j = 1, ..., m (3.40)

with a known non-increasing function ψ and an unknown non-decreasing function φ ful-
filling φ (1) ≤ ψ (1) holds true. We are interested in choosing the parameter j ∈ {1, ..., m}
such that the right-hand side attains its minimum over {1, ..., m}, i.e. mathematically we
are looking for

j := argmin
1≤j≤m

[φ (j) + ψ (j)] .

Since φ is unknown, the index j is also unknown and cannot be determined. The aim is
to choose an element x j̄ such that the index j̄ is easy to compute and that the distance

d
(

x, x j̄

)
to the unknown element x ∈ M is optimal up to some multiplicative constant.

Due to Lepskiı̆ we set

j̄ = max
{

j ≤ m
∣∣ d
(
xi, xj

)
≤ 2ψ (i) for all i < j

}
. (3.41)

Then the following oracle inequality can be shown:

LEMMA 3.40 (DETERMINISTIC ORACLE INEQUALITY):
If (3.40) holds true, φ (1) ≤ ψ (1) and there is some D < ∞ such that

ψ (i) ≤ Dψ (i + 1) for all 1 ≤ i ≤ m− 1, (3.42)

then for j̄ as in (3.41) we have

d
(

x, x j̄

)
≤ 3D min {φ (j) + ψ (j) | j ∈ {1, ..., m}} . (3.43)

PROOF:
See MATHÉ [Mat06, Cor. 1].

The interpretation of (3.43) is as follows: for regularization methods one is often able
to decompose the error into a part which is decreasing as the regularization parame-
ter increases (called the propagated data noise error) and an increasing part (called the
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3.3: A Lepskiı̆-type balancing principle

approximation error). The function ψ in (3.40) should be seen as the former one, the
function φ as the latter. The function ψ is in general known, whereas φ depends on the
unknown ’smoothness’ of x (resp. u†) and is hence unknown. Now the choice (3.41) is
up to a multiplicative factor of 3D as good as the best possible choice.
In the classical theory for Tikhonov regularization (3.3) with linear F and noisy data gobs

fulfilling
∥∥g† − gobs

∥∥
Y
≤ δ it is known that an error estimate of the form∥∥∥u† − uα

∥∥∥
X
≤
∥∥∥u† − (F∗F + αI)−1 F∗Fu†

∥∥∥
X
+
∥∥∥(F∗F + αI)−1 F∗

(
g† − gobs

)∥∥∥
X

holds. The second term on the right-hand side can be bounded by δ
2
√

α
, which is known

as the propagated data noise error. The first term on the right-hand side can be bounded
by some function only under smoothness conditions on u†. For example under a Hölder-
type source condition with smoothness index ν ∈ (0, 1) (i.e. (3.9) with ϕ = ϕν as in
(3.10a)), it can be shown that∥∥∥u† − (F∗F + αI)−1 F∗Fu†

∥∥∥
X
≤ ‖ω‖X αν

holds (see e.g. [EHN96, Sec. 5.1]). To apply the Lepskiı̆ principle we choose r > 1 and
define due to MATHÉ [Mat06] α1 = δ2, αj := α1r2j−2 for j = 2, ..., m where m is the smallest
value such that αm ≥ 1. Then the function

ψ (j) :=
δ
√

αj

is decreasing, fulfills (3.42) with D = r and for the increasing function

φ (j) = 2 ‖ω‖X αν
j

the error decomposition (3.40) holds true with xj := uαj ∈ X. The condition φ (1) ≤ ψ (1)
is fulfilled if 2 ‖ω‖X ≤ δ−ν. So the deterministic oracle inequality yields∥∥∥u† − uα j̄

∥∥∥
X
≤ 3r min {φ (j) + ψ (j) | j ∈ {1, ..., m}} = O

(
δ

2ν
2ν+1

)
which is known to be of optimal order.
In our general setup we have been able to prove convergence rates only w.r.t. the Breg-
man distance Du∗

R
(
uα, u†). It is well-known, that Du∗

R
(
uα, u†) is in general not a metric,

so the Lepskiı̆ principle cannot be applied in the general case. Therefore we will assume
that there exists some constant Cbd < ∞ and some exponent q > 1 such that∥∥∥u− u†

∥∥∥q

X
≤ CbdDu∗

R

(
u, u†

)
for all u ∈ B. (3.44)

If for example X is a Hilbert space andR (u) = ‖u− u0‖2
X, thenDu∗

R
(
u, u†) = ∥∥u− u†

∥∥2
X

and (3.44) is fulfilled with q = 2 and Cbd = 1. Moreover as we have seen in Lemma
3.13 (3.44) holds true whenever X is a q-convex Banach space and R (u) = ‖u‖q

X. Note
that (3.44) is not limited to the case of q-convex Banach spaces, since also for maximum
entropy regularization (3.44) holds true.
The estimate (3.44) ensures that we obtain convergence rates w.r.t. a metric, namely the
norm in X. As we have already seen in Theorem 3.30, under Assumption 3.15 also an
error decomposition holds true. Let us reformulate this result to apply the Lepskiı̆ prin-
ciple:
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Chapter 3: Tikhonov-type regularization

COROLLARY 3.41 (ERROR DECOMPOSITION):
Let Assumptions 3.8 and 3.15 hold true with β ∈

[
0, 1

2

]
and supposeR fulfills (3.44). If moreover

(3.39) is valid, then for any choice of minimizers uα from (3.2) the error decomposition

∥∥∥uα − u†
∥∥∥

X
≤ (4CerrCbd)

1
q (−ϕadd)

∗
(
−1

α

) 1
q

+ (2Cbd)
1
q

err
1
q

α
1
q

(3.45)

is valid for any α > 0.

PROOF:
Theorem 3.30 implies by (3.28) that

Du∗
R

(
uα, u†

)
≤ 2Cerr

1− β
(−ϕadd)

∗
(
−1

α

)
+

1
1− β

err
α

holds true for all α > 0. Now using (3.44) and taking the q-th root implies

∥∥∥uα − u†
∥∥∥

X
≤
(

2CbdCerr

1− β
(−ϕadd)

∗
(
−1

α

)
+

Cbd

1− β

err
α

) 1
q

.

Since the map t 7→ t
1
q is concave this yields by β ≤ 1

2 the assertion.

To apply the Lepskiı̆ principle to the general case, we proceed as before: For some r > 1
we set α1 = err, αj := α1r2j−2 for j = 2, ..., m where m is the smallest value such that
αm ≥ 1 and denote xj := uαj ∈ X. Then the estimate (3.45) implies (3.40) with the
functions

ψ (j) := 2 (2Cbd)
1
q

(
err
αj

) 1
q

,

φ (j) := 2 (4CerrCbd)
1
q (−ϕadd)

∗
(
− 1

αj

) 1
q

,

where the metric is given by the X-norm. Moreover, φ is indeed increasing by Remark

3.29, ψ decreasing and fulfills (3.42) with D = r
2
q . The condition φ (1) ≤ ψ (1) is fulfilled

if and only if 1 ≥ (2Cerr)
1
q
(
(−ϕadd)

∗ (− 1
err

)) 1
q which is due to Lemma 3.29 the case if

err > 0 is small enough. Choosing

j̄ = max

{
j ≤ m

∣∣ ∥∥∥uαi − uαj

∥∥∥
X
≤ 4 (2Cbd)

1
q

(
err
αi

) 1
q

for all i < j

}
(3.46)

in specification of (3.41) and denoting ᾱ := α j̄, we find by Lemma 3.40 that∥∥∥uᾱ − u†
∥∥∥

X
≤ 3r

2
q min {φ (j) + ψ (j) | j ∈ {1, ..., m}} .

To calculate the right-hand side of this expression, we need to balance the terms
(

err
αj

) 1
q

and (−ϕadd)
∗
(
− 1

αj

) 1
q
. In the proof of Theorem 3.30 this has been done by the use of

(3.30), but the typical case is that 1
αj

/∈ −∂ (−ϕadd) (err) for all j = 1, ..., m. The following
lemma allows for some sloppiness in the choice of the optimal αj to achieve optimal rates.
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3.3: A Lepskiı̆-type balancing principle

LEMMA 3.42:
Assume in the previously described setup that err is sufficiently small. Then for

j∗ = min
{

j ∈ {1, ..., m}
∣∣ 1

αj
≤ − inf ∂ (−ϕadd) (err)

}
> 1

the inequality

ϕadd (σ)−
r2

αj∗
σ ≤ r2ϕadd (err)− r2

αj∗
err (3.47)

holds true for all σ ≥ 0 and hence

φ (j∗ − 1) + ψ (j∗ − 1) = O
(

ϕadd (err)
1
q
)

.

PROOF:
As a first step we will show that it holds

1 ≤ − inf ∂ (−ϕadd) (err) , (3.48a)

1 > err · (− inf ∂ (−ϕadd) (err)) , (3.48b)

whenever err is sufficiently small. Therefore note that

− inf ∂ (−ϕadd) (s) = δ−ϕadd (s) = inf
σ∈[0,s)

ϕadd (s)− ϕadd (σ)

s− σ
(3.49)

by Remark 3.31(c). Since

sup
σ∈(s,∞)

ϕadd (σ)− ϕadd (s)
σ− s

≤ inf
σ∈[0,s)

ϕadd (s)− ϕadd (σ)

s− σ
, (3.50)

(3.48a) follows directly from the fact that ϕ2
add is concave as in Remark 3.31(e). Due to

(3.49) we have moreover

− inf ∂ (−ϕadd) (s) ≤
ϕadd (s)− ϕadd (σ)

s− σ
for all 0 ≤ σ < s.

With σ = 0 it follows s · (− inf ∂ (−ϕadd) (s)) ≤ ϕadd (s) for all s > 0 which shows (3.48b).
The properties (3.48) show that j∗ exists and j∗ > 1.

Now we will show (3.47). By (3.49) and the definition of j∗ we have

1
αj∗
≤ ϕadd (err)− ϕadd (σ)

err− σ
for all 0 ≤ σ < err

and due to (3.50) and the definition of αj moreover

1
αj∗

=
1
r2

1
αj∗−1

≥ 1
r2

ϕadd (σ)− ϕadd (err)
σ− err

for all err < σ < ∞.

This implies

σ ∈ [0, err) :
1

αj∗
(err− σ) ≤ ϕadd (err)− ϕadd (σ) ,

σ ∈ (err, ∞) :
1

αj∗
(err− σ) ≤ 1

r2 (ϕadd (err)− ϕadd (σ))

52



Chapter 3: Tikhonov-type regularization

which proves by rearrangements (3.47). Using r2

αj∗
= 1

αj∗−1
we find moreover

(−ϕadd)
∗
(
− 1

αj∗−1

)
= sup

σ≥0

(
ϕadd (σ)−

1
αj∗−1

σ

)
≤ r2ϕadd (err)− 1

αj∗−1
err

and hence

φ (j∗ − 1) + ψ (j∗ − 1)

=2 (2Cbd)
1
q

(
err

αj∗−1

) 1
q

+ 2 (4CerrCbd)
1
q (−ϕadd)

∗
(
− 1

αj∗−1

) 1
q

≤2 (2Cbd)
1
q
(

1− (2Cerr)
1
q
)( err

αj∗−1

) 1
q

+ 2 (4CerrCbd)
1
q r

2
q ϕadd (err)

1
q

which proves by (2Cerr)
1
q > 1 the assertion.

Let us now collect the result on our a posteriori Lepskiı̆-type stopping rule:

COROLLARY 3.43:
Let Assumptions 3.8 and 3.15 with β ∈

[
0, 1

2

]
hold true, (3.39) be valid and R satisfy (3.44).

Then the Lepskiı̆-type balancing principle (3.46) yields the convergence rate∥∥∥uᾱ − u†
∥∥∥q

X
= O (ϕadd (err)) (3.51)

as err↘ 0.

Note that the convergence rate (3.51) is in the quadratic Hilbert space case known to be
optimal for Hölder-type or logarithmic source conditions as already discussed before.
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Chapter 4: Tikhonov-type regularization with Poisson data

CHAPTER

FOUR

TIKHONOV-TYPE REGULARIZATION WITH POISSON DATA

In this chapter we will apply the results on Tikhonov-type regularization (3.2) to the case
of Poisson data as discussed in Chapter 2 where the data fidelity term S is chosen to be a
variant of the negative log-likelihood. We will specially point out our results for the case
of a linear operator F, because then all assumptions can (and will) easily be checked and
verified.
For the whole chapter let the data fidelity terms S

(
·; g†) and S

(
·; gobs) w.r.t. exact and

noisy data be given by (2.14) respectively with some fixed e > 0.

4.1 Bounding the error terms

In this subsection we will bound the error term (3.5). Since Gt is random, no uniform
bound can be expected. But as already mentioned in Chapter 2, we will bound (3.5) in
probability with the help of a concentration inequality. Unfortunately, the concentration
inequality only applies for bounded functions, and hence e > 0 in (3.5) is required. The
main concentration inequality states that the supremum over the integrals of f against
1
t dGt − g† dx decays at least as fast as the noise level ψ (t) = 1√

t
defined in (2.10):

THEOREM 4.1:
Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary, R ≥ 1 and suppose s > d

2 . Define

Bs (R) :=
{
g ∈ Hs (Ω)

∣∣ ‖g‖Hs(Ω) ≤ R
}

.

Then there exist constants Cconc, Cρ ≥ 1 depending only on Ω and s such that

P

 sup
g∈Bs(R)

∣∣∣∣∣∣
∫
Ω

g

(
1
t

dGt − g† dx
)∣∣∣∣∣∣ ≤ ρψ (t)

 ≥ 1− exp
(
− ρ

RCconc

)
(4.1)

for all t ≥ 1 and ρ ≥ RCρ.

PROOF:
First note that due to s > d

2 there exists a continuous embedding E∞ : Hs (Ω) ↪→ L∞ (Ω),
i.e. it holds

‖g‖L∞(Ω) ≤ ‖E∞‖ · R for all g ∈ Bs (R) .

Now choose a countable subset {
gj
}

j∈N
⊂ Bs (R)
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which is dense in Bs (R) w.r.t. the Hs-norm and define

Z := sup
j∈N

∣∣∣∣∣∣
∫
Ω

gj (x)
(

1
t

dGt − g† dx
)∣∣∣∣∣∣ and v0 := sup

j∈N

∫
Ω

1
t
(
gj (x)

)2 g† dx.

Since all gj are elements of Bs (R) we obtain
∥∥ 1

t gj
∥∥

∞ ≤ ψ2 (t) ‖E∞‖ R and so REYNAUD-
BOURET’s concentration inequality (see Lemma 2.6) yields

P
(

Z ≥ (1 + ε) E (Z) +
√

12v0ρ̄ + κ (ε) ‖E∞‖ Rψ2 (t) ρ̄
)
≤ exp (−ρ̄) (4.2)

for all ρ̄ > 0 where κ (ε) = 5/4 + 32/ε. By s > d
2 the set

{
gj
}

j∈N
is also dense in

Bs (R) w.r.t. the L∞-norm and hence we may replace the supremum over j ∈ N by the
supremum over all g ∈ Bs (R). Furthermore, a simple calculation shows

v0 = sup
j∈N

∫
Ω

1
t
g2

j (x) g† dx ≤ ψ2 (t) ‖E∞‖2 R2
∥∥∥g†
∥∥∥

L1(Ω)
.

With ε = 1 this yields from (4.2) the estimate

P

 sup
g∈Bs(R)

∣∣∣∣∣∣
∫
Ω

g

(
1
t

dGt − g† dx
)∣∣∣∣∣∣ ≥ 2E (Z) + C2Rψ (t)

√
ρ̄ + C3Rψ2 (t) ρ̄

 ≤ exp (−ρ̄)

(4.3)
for all ρ̄, t > 0 with C2 :=

√
12 ‖E∞‖

√
‖g†‖L1(Ω) and C3 :=

(
32 + 5

4

)
‖E∞‖. It remains to

control E (Z). For this we need a technical lemma:

LEMMA 4.2:
Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary, R > 0 and suppose s > d

2 . Then
there exists a family of real-valued functions

(
φj
)

j∈N
, numbers

(
γj
)

j∈N
fulfilling

∞

∑
j=0

γ2
j

∫
Ω

φ2
j g† dx < ∞ (4.4)

and some constant Cext > 0 such that

∀g ∈ Bs (R) ∃
(

β j
)

j∈N
s.th. g =

∞

∑
j=0

β jφj,
∞

∑
j=0

(
β j

γj

)2

≤ CextR. (4.5)

PROOF:
Choose some κ > 0 such that Ω ⊂⊂ [−κ, κ]d, i.e. the bounded domain Ω is compactly
included in [−κ, κ]d. Then there exists a continuous extension operator E : Hs (Ω) ↪→
Hs

0

(
[−κ, κ]d

)
(see e.g. [Wlo87, Cor. 5.1]). Moreover, Hs

0

(
[−κ, κ]d

)
is a bounded subset of

Hs
per

(
[−κ, κ]d

)
and in conclusion we have a bounded extension operator

Eext : Hs (Ω) ↪→ Hs
per

(
[−κ, κ]d

)
.

The norm on Hs
per

(
[−κ, κ]d

)
can be defined equivalently by meanings of the discrete

Fourier transform. For details we refer to [Kre99, Sec. 8.1], the necessary properties are
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sketched in the following. Let

Φk (x) :=


1

2κ k = 0,
1√
κ

sin
(

πk
κ x
)

k < 0,
1√
κ

cos
(

πk
κ x
)

k > 0,

x ∈ [−κ, κ]

and furthermore

φj (x) =
d

∏
i=1

Φji (xi) , j ∈ Zd, x ∈ [−κ, κ]d .

Then we have

Hs
per

(
[−κ, κ]d

)
=

{
g ∈ L2

per

(
[−κ, κ]d

) ∣∣∣∣ ∑
j∈Z

(
1 + |j|2

)s
∣∣∣∣〈g, φj

〉
L2([−κ,κ]d)

∣∣∣∣2 < ∞

}

and this space is a Hilbert space equipped with the norm

‖g‖2
Hs

per([−κ,κ]d) = ∑
j∈Z

(
1 + |j|2

)s
∣∣∣∣〈g, φj

〉
L2([−κ,κ]d)

∣∣∣∣2 .

We obtain especially

Eext (Bs (R)) ⊂
{
g ∈ Hs

per

(
[−κ, κ]d

) ∣∣ ‖g‖Hs
per([−κ,κ]d) ≤ R̃

}

with R̃ = CextR for Cext := ‖Eext‖.

Hence, we can choose γj =
(

1 + |j|2
)− s

2
and β j =

〈
g, φj

〉
to ensure (4.5). For (4.4) we

calculate

∑
j∈Zd

γ2
j

∫
Ω

φ2
j g† dx ≤ ∑

j∈Zd

(
1 + |j|2

)−s ∫
Ω

g† dx

≤
∫
Ω

g† dx ∑
j∈Zd

(
1 + |j|2

)−s

< ∞.

due to s > d
2 and hence (4.4) is valid. By renumbering Zd to N we obtain the assertion.

With the help of this lemma we can now insert (4.5) and apply Hölder’s inequality for
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sums to find

Z ≤ sup
∞
∑

j=0

(
βj
γj

)2

≤CextR

∣∣∣∣∣∣
∞

∑
j=0

β j

γj

∫
Ω

γjφj

(
1
t

dGt − g† dx
)∣∣∣∣∣∣

≤ sup
∞
∑

j=0

(
βj
γj

)2

≤CextR

∞

∑
j=0

∣∣∣∣ β j

γj

∣∣∣∣
∣∣∣∣∣∣
∫
Ω

γjφj

(
1
t

dGt − g† dx
)∣∣∣∣∣∣

≤
√

CextR

√√√√√ ∞

∑
j=0

γ2
j

∣∣∣∣∣∣
∫
Ω

φj

(
1
t

dGt − g† dx
)∣∣∣∣∣∣

2

=
√

CextR

√√√√√ ∞

∑
j=0

γ2
j

∫
Ω

φj

(
1
t

dGt − g† dx
)2

where we used that the functions φj are real-valued. Hence by Jensen’s inequality,

E (Z) ≤
√

CextRE


√√√√√ ∞

∑
j=0

γ2
j

∫
Ω

φj

(
1
t

dGt − g† dx
)2



≤
√

CextR

√√√√√√E

 ∞

∑
j=0

γ2
j

∫
Ω

φj

(
1
t

dGt − g† dx
)2



=
√

CextR

√√√√√√ ∞

∑
j=0

γ2
j E


∫

Ω

φj

(
1
t

dGt − g† dx
)2

. (4.6)

Denote Xj =
∫

Ω φj
( 1

t dGt − g† dx
)
. Then E

(
Xj
)
= 0 and hence E

(
X2

j

)
= V

(
Xj
)
, which

may be calculated by formula (2.9b), i.e.

E


∫

Ω

φj

(
1
t

dGt − g† dx
)2

 =
1
t2 E


∫

Ω

φj

(
dGt − tg† dx

)2


= ψ2 (t)
∫
Ω

φ2
j g† dx.

Plugging this into (4.6), we find

E (Z) ≤ ψ (t)
√

CextR

√√√√ ∞

∑
j=0

γ2
j

∫
Ω

φ2
j g† dx = C1

√
Rψ (t)
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where C1 :=
√

Cext

√
∞
∑

j=0
γ2

j

∫
Ω

φ2
j g† dx is finite by (4.4). Inserting this estimate into (4.3)

and using P (A) = 1− P (Ac) yields

P

 sup
g∈Bs(R)

∣∣∣∣∣∣
∫
Ω

g

(
1
t

dGt − g† dx
)∣∣∣∣∣∣ ≤ C1

√
Rψ (t) +

√
ρ̄ψ (t)C2R + ψ2 (t)C3Rρ̄


≥ 1− exp (−ρ̄)

(4.7)

with C2 and C3 defined after equation (4.3). Now note that for t, ρ̄, R ≥ 1 we have ψ2 (t) ≤
ψ (t) and hence

C1
√

Rψ (t) +
√

ρ̄ψ (t)C2R + ψ2 (t)C3Rρ̄ ≤ ρ̄ψ (t) R (C1 + C2 + C3) .

Therefore we gain from (4.7) that

P

 sup
g∈Bs(R)

∣∣∣∣∣∣
∫
Ω

g

(
1
t

dGt − g† dx
)∣∣∣∣∣∣ ≤ ρ̄ψ (t) R (C1 + C2 + C3)

 ≥ 1− exp (−ρ̄)

whenever ρ̄, t ≥ 1. Define Cconc = C1 + C2 + C3 and ρ = ρ̄RCconc. Then the assertion
follows with Cρ = max {Cconc, 1}.

Now we are able to bound the error terms err as in (3.5) in probability. Remember that
err was defined as

err (g) =

∣∣∣∣∣∣
∫
Ω

ln (g + e)
(

1
t

dGt − g† dx
)∣∣∣∣∣∣

if g ≥ − e
2 a.e., which is fulfilled for all g ∈ F (u) , u ∈ B by Assumption 2.7(e).

To apply the concentration inequality to our case, we need to show that

ln (F (u) + e) ∈ Bs (R) for all u ∈ B

with some constant R ≥ 1.

COROLLARY 4.3:
Let Assumption 2.7 hold true and assume moreover that there exists s > d

2 such that F : B →
Hs (Ω) with

R := sup
u∈B
‖F (u)‖Hs(Ω) < ∞. (4.8)

Then there exist Cconc, Cρ ≥ 1 depending only on Ω and s such that

P

(
sup
u∈B

err (F (u)) ≤ ρψ (t)

)
≥ 1− exp

(
− ρ

R max {e−s, ln (R)}Cconc

)
(4.9)

for all t ≥ 1, ρ ≥ R max {e−s, ln (R)}Cρ.

PROOF:
W.l.o.g we may assume that R ≥ 1. Again due to s > d

2 we have ‖F (u)‖L∞(Ω) ≤ ‖E∞‖ · R
for all u ∈ B.
It is well-known that for Ω ⊂ Rd smooth, g ∈ Hs (Ω) ∩ L∞ (Ω) and Φ ∈ Cs (R) where
Cs (R) denotes the Hölder space of bsc-times differentiable functions on R one has Φ ◦
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g ∈ Hs (Ω) (see e.g. [BM01]). To apply this result, we first extend the function x 7→
ln (x + e) from (0, ‖E∞‖ · R) (since we have 0 ≤ F (u) ≤ ‖E∞‖ · R a.e.) to a function Φ on
the whole real line, which can be done such that Φ ∈ Cs (R). Then for any fixed u ∈ B
we obtain Φ ◦ F (u + e) ∈ Hs (Ω) and since Φ|(e,‖E∞‖·R)

(·) = ln (·+ e) and 0 ≤ F (u) ≤
‖E∞‖ · R a.e. we have

Φ ◦ F (u + e) = ln (F (u) + e) a.e.

Since all derivatives up to order s of x 7→ ln (x + e) and hence of Φ on (0, ‖E∞‖ · R)
can be bounded by some constant of order max {e−s, ln (‖E∞‖ · R)}, the extension and
composition procedure described above is bounded, i.e. there exists C > 0 independent
of u such that

‖ln (F (u) + e)‖Hs(Ω) ≤ C max
{

e−s, ln (R)
}
‖F (u)‖Hs(Ω) ≤ C max

{
e−s, ln (R)

}
R

for all u ∈ B. Now the assertion follows from Theorem 4.1.

REMARK 4.4:
Note that the concentration inequality (4.9) holds true only if

ρ > R max
{

e−s, ln (R)
}

Cρ

which tends to ∞ as e ↘ 0. Thus, our convergence analysis will fail if we let e ↘ 0 as
t→ ∞. To fill this gap we would need to accept worse convergence rates by letting e↘ 0
coupled with α↘ 0.

4.2 Convergence rates results

4.2.1 Preliminaries

Before we present and prove the results, let us discuss variational inequalities for the case
of S being the Kullback-Leibler divergence (2.12b) or its shifted version (2.14a). We will
use a special property of the Kullback-Leibler divergence, which is based on the results
of BORWEIN & LEWIS [BL91]:

LEMMA 4.5 (LOWER BOUND FOR KLe):
Let e ≥ 0 and g, ĝ ∈ L∞ (Ω) with ĝ ≥ 0 a.e. and g ≥ − e

2 a.e. Then it holds

‖g− ĝ‖2
L2(Ω) ≤

(
4
3
‖g + e‖L∞(Ω) +

2
3
‖ĝ + e‖L∞(Ω)

)
KLe (ĝ, g) . (4.10)

PROOF:
Consider the function

f (τ) :=
(

4
3
+

2
3

τ

)
(τ ln (τ)− τ + 1)− (τ − 1)2 , τ ≥ 0.

Simple calculations show

f ′ (τ) =
4
3
(τ ln (τ) + ln (τ))− 8

3
τ +

8
3

,

f ′′ (τ) =
4
3

(
ln (τ) +

1
τ
− 1
)

,

f ′′′ (τ) =
4
3

(
1
τ
− 1

τ2

)
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for τ > 0. Since f ′′′ (τ) < 0 for τ ∈ (0, 1) and f ′′′ (τ) > 0 for τ > 1, it follows that

f ′′ (τ) ≥ f ′′ (1) = 4 > 0

and hence f is strictly convex on [0, ∞). Therefore we conclude from f ′ (1) = 0 that
f (τ) ≥ f (1) = 0 for all τ ≥ 0. Now let τ = ū/v̄ for ū ∈ [0, ∞) and v̄ ∈ (0, ∞) to obtain

0 ≤
(

4
3
+

2
3

ū
v̄

)(
ū
v̄

ln
(

ū
v̄

)
− ū

v̄
+ 1
)
−
(

ū
v̄
− 1
)2

and hence by multiplication with v̄2 that

(ū− v̄)2 ≤
(

4
3

v̄ +
2
3

ū
)(

ū ln
(

ū
v̄

)
− ū + v̄

)
(4.11)

for all ū ∈ [0, ∞) and v̄ ∈ (0, ∞). For the inequality (4.10) observe that for e = 0 we are
done if g = 0 and ĝ > 0 on a set of positive measure, since then KL (ĝ, g) = ∞. For e = 0
we can hence restrict to g > 0 and ĝ > 0 a.e.
Now it follows from (4.11) with ū = ĝ + e and v̄ = g + e via integration that

‖g− ĝ‖2
L2(Ω)

≤
∫
Ω

(
4
3
(g + e) +

2
3
(ĝ + e)

)(
(ĝ + e) ln

(
ĝ + e
g + e

)
− ĝ + g

)
dx

≤
(

4
3
‖g + e‖L∞(Ω) +

2
3
‖ĝ + e‖L∞(Ω)

) ∫
Ω

(
(ĝ + e) ln

(
ĝ + e
g + e

)
− ĝ + g

)
dx

=

(
4
3
‖g + e‖L∞(Ω) +

2
3
‖ĝ + e‖L∞(Ω)

)
KL (ĝ + e; g + e)

=

(
4
3
‖g + e‖L∞(Ω) +

2
3
‖ĝ + e‖L∞(Ω)

)
KLe (ĝ; g)

which proves the assertion.

COROLLARY 4.6:
Let F = T be a bounded linear operator between the Hilbert space X and L2 (Ω) and let Assump-
tion 2.7 be fulfilled. If the spectral source condition (3.9) holds true with some general ϕ such that(

ϕ2)−1 is convex and (3.16) is fulfilled, then Assumption 3.24 with R (u) = ‖u− u0‖2
X and

S = KLe, e ≥ 0 holds true with ϕmult = ϕ. Moreover, a spectral source condition (3.9) with ϕ
implies Assumption 3.15 with ϕadd as specified in Theorem 3.18 (up to a multiplicative constant
as agreed),R (u) = ‖u− u0‖2

X, S = KLe and arbitrary β ∈ [0, 1).

PROOF:
To prove that Assumption 3.24 holds true, we find from Lemma 3.20 that

∣∣∣〈u∗, u† − u
〉∣∣∣ ≤ 2 ‖ω‖X

∥∥∥u− u†
∥∥∥

X
ϕ

∥∥T
(
u− u†)∥∥2

L2(Ω)

‖u− u†‖2
X

 for all u ∈ X .

By assumption, we have Du∗
R
(
u, u†) = ∥∥u− u†

∥∥2
X

and now inserting (4.10) and using the
concavity of ϕ we find∣∣∣〈u∗, u† − u

〉∣∣∣ ≤ 2C (u) ‖ω‖XD
u∗
R

(
u, u†

) 1
2

ϕ

(
KLe

(
g†; g

)
Du∗
R (u, u†)

)
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for all u ∈ X and hence especially for all u ∈ B where

C (u) =
(

4
3
‖Tu + e‖L∞(Ω) +

2
3

∥∥∥g† + e
∥∥∥

L∞(Ω)

)
.

Since B is bounded we have supu∈B ‖Tu‖L∞(Ω) < ∞ by Assumption 2.7 and hence

β := 2

(
4
3

sup
u∈B
‖Tu + e‖L∞(Ω) +

2
3

∥∥∥g† + e
∥∥∥

L∞(Ω)

)
‖ω‖X < ∞

which shows the assertion.
For Assumption 3.15 we use the results of Theorem 3.18 to find an additive variational
inequality with R (u) = ‖u− u0‖2

X, S (g; ĝ) = ‖g− ĝ‖2
L2(Ω) and the specified ϕadd. The

same argument as above shows the assertion.

COROLLARY 4.7:
Let X be a Hilbert space, let Assumption 2.7 be fulfilled and let the tangential cone condition
(3.13) be valid. If the spectral source condition (3.9) holds true with some general ϕ such that(

ϕ2)−1 is convex and (3.16) is fulfilled, then Assumption 3.24 with R (u) = ‖u− u0‖2
X and

S = KLe, e ≥ 0 holds true with ϕmult = ϕ. Moreover, a spectral source condition (3.9) with ϕ

implies Assumption 3.15 with ϕadd as specified in Theorem 3.18 and R (u) = ‖u− u0‖2
X and

S = KLe.

PROOF:
This is proven similarly to Corollary 4.6, where the estimate (3.14) which holds true by
the tangential cone condition is inserted before applying (4.10).

COROLLARY 4.8:
Let X be a Hilbert space, let Assumption 2.7 be fulfilled and let the Lipschitz condition (3.17) be
valid. Then Assumption 3.15 with R (u) = ‖u− u0‖2

X and S = KLe holds true if L
2 ‖ω‖ < 1

with ϕadd = β̃ϕ 1
2

for some constant β̃ > 0 which is small if ‖ω‖ is small.

PROOF:
The result by FLEMMING AND HOFMANN [FH11] already mentioned in Section 3.2.1
yields a variational inequality of the kind〈

u∗, u† − u
〉
≤ βDu∗

R

(
u, u†

)
+ β̃

∥∥∥F (u)− g†
∥∥∥

L2(Ω)

where the constant β̃ is of order ‖ω‖. Now inserting (4.10) yields the claim.

REMARK 4.9:
Beyond the aforementioned corollaries note that Assumption 3.15 and 3.24 may hold true
for better index functions ϕmult and ϕadd respectively than those from the corresponding
spectral source conditions, especially if g† is close to 0 in parts of the domain. On the
other hand, if there exists a constant c > 0 such that F (u) ≥ c a.e., then the Kullback-
Leibler divergence can also be bounded from above by the L2 distance of both functions.
Moreover, both assumptions or at least one of them might be fulfilled for other reasons.
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4.2.2 Convergence rates for a Poisson process

This section provides the first main result of this thesis, namely convergence rates in ex-
pectation for full random data. The result splits into two parts, namely rates under an a
priori stopping rule and an a posteriori stopping rule. As source condition we will use
only Assumption 3.15 for simplicity, but similar results can be obtained under Assump-
tion 3.24. Afterwards, we will specify the result in case of a linear operator in a separate
corollary. Due to the usage of the concentration inequality (4.9) we will always assume
that e > 0 in this subsection. The following lemma turns out to be quite helpful:

LEMMA 4.10:
Let (Ek)k∈N be a family of events and (dt)t>0 be a family of random variables such that

(a)
⋃

k∈N Ek = E where E is the event space,

(b) there exists c > 0 such that P
(
Ec

k

)
≤ exp (−ck) for all k ∈N,

(c) maxEk dt ≤ C (k)Ξ (t) for all k ∈N, t > 0 and

(d) ∑∞
k=2 exp (−c (k− 1))C (k) < ∞.

Then it holds
E (dt) = O (Ξ (t)) as t→ ∞.

PROOF:
Due to (a) and (c) it holds with E0 = ∅

E (dt) =
∞

∑
k=1

P (Ek \ Ek−1) E
(

dn(t)

∣∣∣∣ Ek \ Ek−1

)

≤
∞

∑
k=1

P (Ek \ Ek−1)max
Ek

dn(t)

≤
∞

∑
k=1

P (Ek \ Ek−1)C (k)Ξ (t)

≤ P (E1)C (1)Ξ (t) +
∞

∑
k=2

P
(
Ec

k−1
)

C (k)Ξ (t) .

Now inserting (b) and using P (E1) ≤ 1 we find

E (dt) ≤ Ξ (t)

(
C (1) +

∞

∑
k=2

exp (−c (k− 1))C (k)

)
.

Property (d) yields the assertion.

THEOREM 4.11:
Let the Assumptions 2.7 and 3.15 be satisfied and F : B → Hs (Ω) such that (4.8) is fulfilled
with s > d

2 . If we choose the parameter α such that

1
α
∈ −∂ (−ϕadd) (ψ (t)) (4.12)

we obtain the convergence rate

E
(
Du∗
R

(
uα, u†

))
= O (ϕadd (ψ (t))) , t→ ∞. (4.13)
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PROOF:
Theorem 3.30 implies

(1− β)Du∗
R

(
uα, u†

)
+

1
2α

KLe

(
g†; F (uα)

)
≤ 2 (−ϕadd)

∗
(
−1

α

)
+

err
α

where err is defined by (3.8). To apply the concentration inequality (4.9) we estimate
furthermore

(1− β)Du∗
R

(
uα, u†

)
≤ 2 (−ϕadd)

∗
(
−1

α

)
+

2
α

sup
u∈B

err (F (u)) (4.14)

due to the definition (3.8) of err. Now choose

ρk := R max
{

e−s, |ln (R)|
}

Cρk, k ∈N

where Cρ is the constant from Corollary 4.3 and define the events

Ek :=

{
sup
u∈B

err (F (u)) ≤ ρkψ (t)

}
, k ∈N.

From (4.9) it is known that

P (Ec
k) ≤ exp

(
−

Cρk
Cconc

)
.

Moreover, we find from (4.14) that

max
EK
Du∗
R

(
uα, u†

)
≤ 2

1− β

(
(−ϕadd)

∗
(
−1

α

)
+

ρkψ (t)
α

)
≤ 2ρk

1− β

(
(−ϕadd)

∗
(
−1

α

)
+

ψ (t)
α

)
.

Again due to Young’s inequality we find as in the proof of Theorem 3.30 for α = α (t) as
in (4.12) that

(−ϕadd)
∗
(
−1

α

)
+

ψ (t)
α

= ϕadd (ψ (t))

and hence
max

EK
Du∗
R

(
uα, u†

)
≤ C (k) ϕadd (ψ (t))

for all k ∈ N with C (k) = 2ρk
1−β . For c =

Cρ

Cconc
the sum ∑∞

k=2 exp (−c (k− 1))C (k) is
convergent (and hence finite) since C (k) ∼ k as k → ∞. This allows us to apply Lemma
4.10 with Ξ (t) = ϕadd (ψ (t)) and dt = Du∗

R

(
uα(t), u†

)
which proves (4.13).

THEOREM 4.12:
Let the Assumptions 2.7 and 3.15 be satisfied, F : B → H2 (Ω) such that (4.8) is fulfilled with
s > d

2 . Assume moreover that β ∈
[
0, 1

2

]
, (3.44) is fulfilled and ϕadd is such that

ln (t) · ϕadd (ψ (t))↘ 0 as t→ ∞. (4.15)

Define

ρ (t) := −τ ln (ψ (t)) =
τ

2
ln (t) , (4.16a)

Φdet
noi (n) := 2 (4Cbd)

1
q

(
ρ (t)ψ (t)

αn

) 1
q

, (4.16b)
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with a tuning parameter τ ≥ 1
2 R max {e−s, |ln (R)|}Cconc, fix r > 1 and set αj := ρ (t)ψ (t) ·

r2j−2 for j = 1, ..., m where m is the smallest value such that αm ≥ 1. Then for the a posteriori
Lepskiı̆-type stopping rule

j̄ := min
{

j ≤ m
∣∣ ∥∥∥uαi − uαj

∥∥∥
X
≤ 2Φdet

noi (i) for all i < j
}

(4.17)

we denote ᾱ = α j̄ and find that for sufficiently large t the estimate

E
(∥∥∥uᾱ − u†

∥∥∥q

X

)
≤ C̄

(
ρ (t) + diam (B)q) ϕ (ψ (t))

holds true with a constant C̄ independent of t and hence

E
(∥∥∥uᾱ − u†

∥∥∥q

X

)
= O (ln (t) · ϕadd (ψ (t))) , t→ ∞. (4.18)

PROOF:
Corollary 3.41 implies under the posed assumptions the error decomposition

∥∥∥uα − u†
∥∥∥

X
≤ (4Cbd)

1
q (−ϕadd)

∗
(
−1

α

) 1
q

+ (2Cbd)
1
q

err
1
q

α
1
q

where err = 2 sup
u∈B

err (F (u)).

Let t be so large that the assumptions from Corollary 4.3 hold true. Now consider the
event

Aρ =

{
sup
u∈B

err (F (u)) ≤ ρ (t)ψ (t)

}
which fulfills P

(
Aρ

)
≥ 1− exp (−cρ (t)) with c = 1

R max{e−s,|ln(R)|}Cconc
by (4.9). Then on

Aρ the error decomposition (3.40) is fulfilled with

φ (j) = 2 (4Cbd)
1
q (−ϕadd)

∗
(
− 1

αj

) 1
q

,

ψ = Φdet
noi.

The functions φ and ψ meet the required properties from Section 3.3 and hence we find
by Lemma 3.40 that∥∥∥uᾱ − u†

∥∥∥
X
≤ 3r

2
q min

{
φ (j) + ψ (j)

∣∣ j ∈ {1, ..., m}
}

(4.19)

on Aρ. By estimating

φ (j) + ψ (j) ≤ ρ (t) 2 (4Cbd)
1
q

(
(−ϕadd)

∗
(
− 1

αj

) 1
q

+

(
ψ (t)

αj

) 1
q
)

,

it can be seen in the same way as in Lemma 3.42 where err is replaced by ψ (t), that there
exists a constant C̄ independent of t such that

E
(∥∥∥uᾱ − u†

∥∥∥q

X

∣∣ Aρ

)
≤ C̄ρ (t) ϕadd (ψ (t))
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4.2: Convergence rates results

for all t sufficiently large. Hence

E
(∥∥∥uᾱ − u†

∥∥∥q

X

)
= P

(
Aρ

)
E
(∥∥∥uᾱ − u†

∥∥∥q

X

∣∣ Aρ

)
+ P

(
Ac

ρ

)
E
(∥∥∥uᾱ − u†

∥∥∥q

X

∣∣ Ac
ρ

)
≤ C̄ρ (t) ϕadd (ψ (t)) + exp (−cρ (t))diam (B)q . (4.20)

Due to the definition of ρ (t) and the choice of τ we can for all sufficiently large t further-
more assume that

exp (−cρ (t)) = ψ (t)cτ ≤ Cϕadd (ψ (t)) .

for some constant C > 0 independent of t since ϕ2
add is concave and cτ ≥ 1

2 . Inserting this
into (4.20) yields the claim.

REMARK 4.13 (CHOICE OF τ IN (4.16)):
One might argue that the requirement τ ≥ 1

2 R max {e−s, |ln (R)|}Cconc in the theorem
above cannot be ensured in practice since Cconc is unknown. But as we have seen in the
proof of Theorem 4.1, we may calculate Cconc by evaluating the operator norms of the
extension and embedding operator from that proof. This can be done numerically in
practice. Moreover, the occurring norm of g† can be set to 1 by rescaling t, i.e. it seems
natural to assume

∥∥g†
∥∥

L1(Ω)
= 1. Thus, the Lepskiı̆-type balancing principle (4.17) can be

implemented in practice.

The following corollary specifies the results for the case of a quadratic Penalty term and
an operator fulfilling the tangential cone condition, which includes the case of a linear
operator.

COROLLARY 4.14:
Let X be a Hilbert space, Assumption 2.7 be satisfied, F : B→ H2 (Ω) such that (4.8) holds true
and use R (u) = ‖u− u0‖2

X. Assume moreover that the operator F fulfills the tangential cone
condition (3.13) (which includes the case that F is linear).
If a spectral source condition (3.9) with ϕ = ϕ̄p, p > 0 holds true, then the parameter choice
α = 1

ϕ̄′p(ψ(t))
leads to the convergence rate

E
(∥∥∥uα − u†

∥∥∥2

X

)
= O

(
ϕ̄2p

(
1√

t

))
, t→ ∞.

If the spectral source condition (3.9) with ϕ = ϕν, ν ∈
(
0, 1

2

]
is fulfilled, then the parameter

choice α = t−
1

4ν+2 leads to the convergence rate

E
(∥∥∥uα − u†

∥∥∥2

X

)
= O

(
t
−2ν

4ν+2

)
, t→ ∞

and the Lepskiı̆-type balancing principle from Theorem 4.12 leads to the convergence rates

E
(∥∥∥uα j̄

− u†
∥∥∥2

X

)
= O

(
ln (t) · t −2ν

4ν+2

)
, t→ ∞.

PROOF:
Corollary 4.7 yields the validity of Assumption 3.15 with sufficiently small β and hence
we are able to apply Theorems 4.11 and 4.12 to find the assertions.
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Chapter 4: Tikhonov-type regularization with Poisson data

4.3 General convergence

To finish this chapter, we want to comment on the general convergence of (3.2) under
Poisson data. Assume therefore that X is a Hilbert space and R is given by the squared
norm in X. If F is a bounded linear operator, then the assumptions of the following
remark even simplify since the tangential cone condition is fulfilled with η̄ = 0.

REMARK 4.15 (REGULARIZATION PROPERTIES):
Let F : X → Y be an operator fulfilling Assumption 2.7 and (3.13). As above we find
the existence of some index function ϕ such that (3.9) is fulfilled. The function ϕ can be
chosen such that ϕ2 is concave by possibly changing ω. Then Corollary (4.7) implies the
validity of Assumption 3.15. Thus for proper chosen α = α (t) we have

∥∥uα − u†
∥∥

X
→

0 as t → ∞ for the regularized solutions uα gained by (3.2) with Poisson data Gt as
described in Chapter 2.

Moreover if the spectral source condition is strong enough (i.e. such that (4.15) is ful-
filled), then the a posteriori choice of α given by the Lepskiı̆-type balancing principle
(4.17) yields convergence

∥∥uα − u†
∥∥

X
→ 0 as t→ ∞.

67





Chapter 5: The iteratively regularized Gauss-Newton method

CHAPTER

FIVE

THE ITERATIVELY REGULARIZED GAUSS-NEWTON METHOD

In this chapter we will recall the known theory for the iteratively regularized Gauss-
Newton method which we will generalize and apply to the case of Poisson data in Chap-
ter 6 and 7 respectively. Assume for the whole chapter that an ill-posed problem

F (u) = g, (5.1)

with a nonlinear, Fréchet-differentiable operator F is given where only noisy data gobs

fulfilling ∥∥∥g† − gobs
∥∥∥

Y
≤ δ (5.2)

for a known upper bound δ > 0 are available. The iteratively regularized Gauss-Newton
method consists in calculating

un+1 ∈ argmin
u∈B

[∥∥∥F (un) + F′ [un] (u− un)− gobs
∥∥∥r

Y
+ αn ‖u− u0‖p

X

]
(5.3a)

where u0 ∈ B is some initial guess and r, p ∈ (1, ∞). The regularization parameters
(αn)n∈N are usually chosen in a way such that

α0 ≤ 1, αn ↘ 0, 1 ≤ αn

αn+1
≤ Cdec for all n ∈N. (5.3b)

As already mentioned in Chapter 3, Tikhonov-type regularization for nonlinear opera-
tors F has the disadvantage that the minimizer of the Tikhonov functional (and hence the
regularized solution) is difficult to find since the problem is non-convex. For the method
(5.3) we have to solve a convex minimization problem in every iteration, which seems to
be easier, but possibly time consuming if not only a few iterations are needed. Neverthe-
less we expect fast convergence, since the method (5.3) is of Newton type.

This chapter will start with a short motivation of (5.3) and a comparison to other iterative
methods. Moreover, the regularization properties of (5.3) are discussed and linked to
the classical case of Hilbert spaces X and Y and r = p = 2. Finally, we will give some
results on convergence rates, which will be covered by the more general results in the next
chapter. The results from this chapter are in core covered by the work of KALTENBACHER

ET AL. [KNS08, KSS09, KH10].
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5.1: Idea and connections to other iterative methods

5.1 Idea and connections to other iterative methods

Nonlinear operator equations of the kind (5.1) are usually solved by linearization. Re-
placing the exact operator evaluation F (u) by the first order Taylor expansion F (un) +
F′ [un] (u− un) around some former approximation un of the exact solution u†, it remains
to solve the linearized equation

F (un) + F′ [un] (u− un) = gobs (5.4)

for the next approximation u = un+1. If the operator equation (5.1) is ill-posed, then also
(5.4) is in general ill-posed. Therefore, regularization is needed.
The method (5.3) is obtained by applying Tikhonov regularization to the linearized equa-
tion (5.4) in every iteration. It has first been proposed in the quadratic Hilbert space case
by BAKUSHINSKIĬ [Bak92]. Since the linearized equation (5.4) could also be formulated
as

F (un) + F′ [un] (h) = gobs (5.5)

where h is considered as an update and the next iterate is gained via un+1 = un + h, also
methods of the form

h ∈ argmin
u∈B

[∥∥∥F (un) + F′ [un] h− gobs
∥∥∥r

Y
+ αn ‖h‖p

X

]
, (5.6a)

un+1 = un + h (5.6b)

seem suitable. The method (5.6) is known as the Levenberg-Marquard method and is
motivated by applying Tikhonov regularization to (5.5) with initial guess h0 = 0. Op-
posed to (5.3) it enforces only smoothness of the update h, whereas the iteratively reg-
ularized Gauss-Newton method guarantees smoothness of the next iterate un+1. One
would expect (5.3) to be more stable against rounding errors. Moreover, it turned out that
(5.3) is easier to analyze. For a recent result on the analysis of the Levenberg-Marquard
method in Hilbert spaces with r = p = 2 providing order-optimal convergence we refer
to [Han10].
We should mention also other iterative methods for nonlinear operator equations of gra-
dient type. Since the solution of (5.1) is (under exact data) also minimum of the functional

J (u) =
∥∥∥F (u)− gobs

∥∥∥r

Y
,

another natural approach is to find this minimum by a steepest decent method. This
means that one iteratively obtains approximations by

un+1 = un − µn∇J (un) (5.7)

where ∇J (un) denotes the gradient of J at un and µn is a step-length parameter. For
a Hilbert space Y and r = 2 it holds ∇J (un) = F′ [un]

∗ (F (un)− gobs). The method
(5.7) is known as Landweber iteration and regularization is obtained by choosing an
appropriate stopping parameter (for example by the discrepancy principle). Landweber
iteration is easy to implement, but it must be said however that it often converges slowly.
For a convergence analysis in Hilbert spaces we refer to [KNS08, Cpt. 2]. A generalized
and accelerated version of (5.7) has been analyzed in Banach spaces in [HK10a, HK10b].

70



Chapter 5: The iteratively regularized Gauss-Newton method

5.2 Regularization properties

For iterative methods of the form (5.3) one requires slightly different properties than for
Tikhonov-type regularization. Namely we are interested in the following properties:

(a) Well-definedness of the nth iterate, i.e. for any n ∈N and any gobs ∈ Y there exists
at least one minimizer of (5.3a).

(b) Convergence for exact data, i.e. for gobs = g† there exists either some N ∈ N such
that uN = u† or the regularized solutions un converge to u†.

(c) Convergence for noisy data, i.e. the regularized solutions uN converge to u† as the
noise level tends to 0 and the stopping index N is chosen in an appropriate manner.

Item (a) requires two things, namely that un ∈ B ⊂ D (F), which is guaranteed by
Assumption 2 and the side-condition u ∈ B, and the existence of a minimizer of (5.3a).
This can be achieved in the same way as for Tikhonov-type regularization in Theorem 3.3
in the general case and we will assume in the following that (a) holds true. Features (b)
and (c) guarantee that the regularized solutions un indeed approximate solutions of the
original problem (5.1).

5.2.1 Comments on the quadratic Hilbert space case

Item (b) was first investigated by BAKUSHINSKIĬ [Bak92], who proved local convergence
for exact data under a nonlinearity and a source condition. He even proved a rate of
convergence under that source condition. For the quadratic Hilbert space case a conver-
gence is of (5.3) is given in [KNS08, Sec. 4.2] under a suitable nonlinearity condition and
a Hölder-type source condition including the case ν = 0. This corresponds to the case of
no source condition, which is of special interest for the items (b) and (c), since it provides
the required convergence for all u†. The authors there considered the case of an a priori
stopping criterion N∗ = N∗ (δ) chosen such thatηα

ν+ 1
2

N∗ ≤ δ < ηα
ν+ 1

2
n for all 0 ≤ n < N∗ if 0 < ν ≤ 1,

η ≥ δα
− 1

2
N∗ and N∗ (δ)→ ∞ as δ↘ 0 if ν = 0

for some η > 0. Moreover they proved convergence (and also convergence rates) for an
a posteriori stopping rule by the discrepancy principle, i.e. N∗ = N∗ (δ) is chosen such
that ∥∥∥gobs − F (uN∗)

∥∥∥
Y
≤ τδ <

∥∥∥gobs − F (un)
∥∥∥

Y
for all 0 ≤ n < N∗ (5.8)

where τ > 1 is some sufficiently large tuning parameter.
We will not repeat these results in detail here, since we are interested in the more general
case (5.3a) where X and Y do not need to be Hilbert spaces and p 6= 2 and r 6= 2 are
allowed.

5.2.2 The case of general norm powers

The case of general norm powers has been treated by KALTENBACHER ET AL. in [KSS09],
where the following results are taken from. The authors provide convergence of (5.3a)
where also the regularization parameters (αn)n∈N are chosen a posteriori. Since the ge-
ometry of Banach spaces is much more difficult than those of Hilbert spaces, they needed
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5.2: Regularization properties

to restrict the class of Banach spaces X. Thus assume in the following that X is reflexive
and strictly convex. If X is moreover p-convex, then convergence rates w.r.t. the Bregman
distance imply rates w.r.t. the norm by Lemma 3.13.
Note that for reflexive and uniformly smooth X the subdifferential ∂ ‖·‖p

X

(
u†) is single

valued and the only subgradient can be expressed with the help of the duality mapping
Jp : X→ X∗ (cf. [SGG+08, Sec. 10.3]) characterized by

u∗ ∈ Jp (u) ⇔ 〈u∗, u〉 = ‖u‖p
X and ‖u∗‖X∗ = ‖u‖

p−1
X .

Since we use only norm powers ‖·‖p
X as penalty term, we will now specify the notation

of the Bregman distance for this chapter. Here we denote for a uniformly smooth Banach
space X by

Du∗
p

(
u, u†

)
:= Du∗

‖·‖p
X

(
u, u†

)
=

1
p
‖u‖p

X −
1
p

∥∥∥u†
∥∥∥p

X
−
〈

Jp

(
u†
)

, u− u†
〉

the Bregman distance w.r.t. the p-th power of the norm in X.
Now let us continue with the a posteriori choice of the regularization parameters pro-
posed by KALTENBACHER ET AL. [KSS09]. It has been shown (cf. [KSS09, Lem. 1]) that
the following parameter choice rule is meaningful: Chose αn such that

θ
∥∥∥F (un)− gobs

∥∥∥
|Y
≤
∥∥∥F′ [un] (un+1 (αn)− un) + F (un)− gobs

∥∥∥
Y
≤ θ̄

∥∥∥F (un)− gobs
∥∥∥

Y

(5.9)
where un+1 (αn) denotes the solution to (5.3a) with regularization parameter αn and 0 <
θ < θ̄ < 1 are some parameters. Together with the discrepancy principle as stopping rule
KALTENBACHER ET AL. [KSS09] obtained the following result:

THEOREM 5.1:
Let F be a weakly sequential closed (see e.g. [KSS09, eq. (11)]) nonlinear operator satisfying a
tangential cone condition (3.13) with a parameter η̄ such that

η̄ < θ < θ̄ < 1

and chose the tuning parameter τ in the discrepancy principle (5.8) so large that

η̄ +
1 + η̄

τ
≤ θ, η̄ <

1− θ̄

2
.

Moreover assume that either F′ [u] : X→ Y is weakly closed for all u ∈ B and Y reflexive or B
is weakly closed.
Then for all n ≤ N∗ (δ)− 1 with N∗ (δ) according to (5.8) the iterates

un+1 :=

{
un+1 (αn) if

∥∥F′ [un] (u0 − un) + F (un)− gobs
∥∥

Y
≥ θ̄

∥∥F (un)− gobs
∥∥

Y
,

u0 else
(5.10)

are well-defined and uN∗(δ) converges strongly to u† as δ↘ 0.

PROOF:
See [KSS09, Thm. 3]. Note that by Assumption 2 the solution u† to (5.1) is unique.
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Chapter 5: The iteratively regularized Gauss-Newton method

5.3 Convergence rates

As already mentioned before, BAKUSHINSKIĬ [Bak92] proved already rates of conver-
gence in the noise free case for (5.3) with r = p = 2 and Hilbert norms ‖·‖X and
‖·‖Y. More general convergence rate results for this classical case where obtained by
BLASCHKE (now KALTENBACHER), NEUBAUER AND SCHERZER [BNS97] for Hölder-type
source conditions (3.9) with ϕ = ϕν and ν ∈

(
0, 1

2

)
as well as HOHAGE [Hoh97] for log-

arithmic convergence rates (3.9) ϕ = ϕp and p > 0. Some of these results have been
collected in the monograph [KNS08]. We will now present the most general result for
(5.3) known so far obtained by KALTENBACHER & HOFMANN [KH10] which includes
the aforementioned results.
We have already seen in Theorem 5.1 that for convergence (and hence also convergence
rates) the degree of nonlinearity of F has to be restricted. This is necessary due to the
fact that one has to compare the first order Taylor expansions used in the method (5.3a)
with the true operator evaluation F (u). In the case of general source conditions this is
usually done by the already known tangential cone condition (3.13), but this condition
can be relaxed for Hölder-type source conditions. The following nonlinearity condition
can be seen as an attempt to merge both assumptions:

ASSUMPTION 5.2 (NONLINEARITY CONDITION OF [KH10]):
Assume that there exists some constant K > 0 such that

sup
v,w∈X, u†+v∈B, u†+w∈B

∥∥(F′ [u† + v
]
− F′

[
u†])w

∥∥
Y

‖F′ [u†]w‖c1
Y Du∗

p (u† + w, u†)
c2 ‖F′ [u†] v‖c3

Y Du∗
p (u† + v, u†)

c4
≤ K

(5.11)
with exponents c1, c2, c3, c4 ≥ 0.

If c1 = c3 = 0 and c2 = c4 = 1
2 , (5.11) can be seen as the usual Lipschitz condition on F′

in terms of the Bregman distance in X.
If c1 = c3 = 1

2 and c2 = c4 = 0, then (5.11) leads to

∥∥(F′ [u + v]− F′ [u]
)

w
∥∥

Y
≤ K

∥∥∥F′
[
u†
]

v
∥∥∥ 1

2

Y

∥∥∥F′
[
u†
]

w
∥∥∥ 1

2

Y
,

and hence we have∥∥∥F
(

u† + w
)
− F

(
u†
)
− F′

[
u†
]

w
∥∥∥

Y
≤
∫ 1

0

∥∥∥(F′
[
u† + tw

]
− F′

[
u†
])

w
∥∥∥

Y
dt

≤K
2

∥∥∥F′
[
u†
]

w
∥∥∥

Y

and on the other hand∥∥∥F
(

u† + w
)
− F

(
u†
)∥∥∥

Y
=

∥∥∥∥∫ 1

0
F′
[
u† + tw

]
w dt

∥∥∥∥
Y

≥
∥∥∥F′

[
u†
]

w
∥∥∥

Y
−
∫ 1

0

∥∥∥(F′
[
u† + tw

]
− F′

[
u†
])

w
∥∥∥

Y
dt

≥
∥∥∥F′

[
u†
]

w
∥∥∥

Y
− K

2

∥∥∥F′
[
u†
]

w
∥∥∥

Y
=

2− K
2

∥∥∥F′
[
u†
]

w
∥∥∥

Y
.

Putting both inequalities together shows that a local tangential cone condition (i.e. (3.13)
for u = u† fixed) with η = K

2−K is valid. It can be seen moreover that (3.13) with u = u†
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5.3: Convergence rates

fixed does not imply (5.11) in general. Therefore, (5.11) is a stronger condition in this
case.
The cases where c1, c2, c3, c4 > 0 represent nonlinearity conditions which are stronger
than the Lipschitz condition, but still weaker than the tangential cone condition. They
are limited to the case of Hölder-type source conditions which will be specified in As-
sumption 5.4. But before that we have to specify the used source condition:

ASSUMPTION 5.3 (MULTIPLICATIVE VARIATIONAL INEQUALITY OF [KH10]):
There exists u∗ ∈ ∂R

(
u†) ⊂ X′, β ≥ 0 and a concave index function ϕmult : (0, ∞) → (0, ∞)

such that∣∣∣〈u∗, u† − u
〉∣∣∣ ≤ βDu∗

p

(
u, u†

) 1
2

ϕmult

(∥∥F′
[
u†] (u− u†)∥∥2

Y

Du∗
p (u, u†)

)
for all u ∈ B. (5.12)

Moreover assume that ϕmult is such that

t 7→ ϕmult (t)√
t

is monotonically decreasing.

If is easy to see that (5.12) is still motivated by the Hilbert space setting. Using the result
of Lemma 3.20 and generalizing the X-norm by the Bregman distance Du∗

p
(
u, u†), it is

clear that the condition (5.12) belongs to a range condition of the form (3.9) with the same
index function.
Comparing (5.12) with (3.15) shows that the only difference is the absence of derivatives
in (3.15), which can be gained from (5.12) by applying a usual tangential cone condition
(3.13). This has already been used to motivate (3.15) in Section 3.2.1.
Now we are able to pose the interplay condition which connects the source condition
(5.12) to the nonlinearity condition (5.11):

ASSUMPTION 5.4 (INTERPLAY CONDITION OF [KH10]):
(a) In case of ϕmult = ϕ ν

2
in (5.12) with ν ∈ (0, 1) let the exponents c1, c2, c3, c4 ≥ 0 from

(5.11) satisfy

c1 + c2
2ν

ν + 1
≥ 1

2
, c3 + c4

2ν

ν + 1
≥ 1

2
as well as

c1 + c2r ≥ 1
2

, c3 + c4r ≥ 1
2

where either the latter two inequalities are proper or K in (5.11) is sufficiently small. More-
over assume that β is sufficiently small.

(b) In case of a general source condition (5.12) with arbitrary ϕmult assume that

c1 = c3 =
1
2

, c2 = c4 = 0

and that K in (5.11) is sufficiently small. Moreover, denote

ϕr (t) := tr−2ϑ−1 (t) , ϑ (t) := ϕmult (t)
√

t

and assume that

ϕmult
(
Ĉrt
)
≤ Ĉϕmult ϕmult (t) for all 0 ≤ t ≤ t̂

with some in [KH10, eq. (30)] specified constants Ĉr, Ĉϕmult and t̂.
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Chapter 5: The iteratively regularized Gauss-Newton method

Note that item (a) allows for a Lipschitz-type nonlinearity condition in the limit case of
the most often used source condition ϕmult = ϕ 1

2
, and for mixed nonlinearity conditions

if ϕmult = ϕ ν
2

with ν < 1. In the case of general source conditions, item (b) implies a
tangential cone condition in accordance with the fact that no convergence rates result
under weaker nonlinearity conditions with general ϕmult is known.
We are now able to present the main result on (5.3) with a priori parameter choices:

THEOREM 5.5:
Let the Assumptions 5.2, 5.3 and 5.4 hold true and let Du∗

p
(
u0, u†) be sufficiently small. Then

the iterates (un)n∈N obtained from (5.3) with exact data gobs = g† fulfill

Du∗
p

(
un+1, u†

)
=

O
(

α
2ν

r(ν+1)−2ν
n

)
if ϕmult = ϕ ν

2
in (5.12),

O
(

ϕ2
mult

(
ϑ−1 (ϕ−1

r (α2)
)))

else,

∥∥∥F′
[
u†
] (

un+1 − u†
)∥∥∥

Y
=

O
(

α
ν+1

r(ν+1)−2ν
n

)
if ϕmult = ϕ ν

2
in (5.12),

O
(

ϕ−1
r (αn)

)
else.

In case of noisy data assume additionally that (5.2) holds true. Then for a parameter choice

N∗ (δ) :=

min
{

n ∈N
∣∣ α

ν+1
r(ν+1)−2ν
n ≤ τδ

}
if ϕmult = ϕ ν

2
in (5.12),

min
{

n ∈N
∣∣ αn ≤ ϕr (τδ)

}
else

with sufficiently large tuning parameter τ ≥ 1 one obtains

Du∗
p

(
uN∗(δ), u†

)
=

O
(

δ
2ν

1+ν

)
if ϕmult = ϕ ν

2
in (5.12),

O
(

ϕ2
mult

(
ϑ−1 (δ)

))
else

(5.13)

as δ↘ 0.

PROOF:
See [KH10, Thm. 1].

Note that the proven rates (5.13) are optimal as pointed out in Section 3.2.3. Moreover, a
similar convergence rates result for the a posteriori parameter choices (5.9) and (5.8) can
be obtained:

THEOREM 5.6:
Let Assumption 5.3 and a tangential cone condition (3.13) with η fulfilling

η < θ < θ̄ < 1

hold and choose the tuning parameter τ in the discrepancy principle (5.8) so large that

η +
1 + η

τ
≤ θ, η <

1− θ̄

2
.

Assume that the noise level δ > 0 from (5.2) fulfills

δ <

∥∥F (u0)− gobs
∥∥

Y

τ
.
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5.3: Convergence rates

Moreover let Du∗
p
(
u0, u†) be sufficiently small and assume that either F′ [u] : X → Y is weakly

closed for all u ∈ B and Y reflexive or B is weakly closed.
Then the iterates un+1 defined by (5.10) are well defined for n ≤ N∗ − 1 with N∗ = N∗ (δ)
obtained by the discrepancy principle (5.8) and the αn’s chosen according to (5.9) and they fulfill

Du∗
p

(
uN∗(δ), u†

)
=

O
(

δ
2ν

1+ν

)
if ϕmult = ϕ ν

2
in (5.12),

O
(

ϕ2
mult

(
ϑ−1 (δ)

))
else

(5.14)

as δ↘ 0.

PROOF:
See [KH10, Thm. 2].
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Chapter 6: Generalization of the IRGNM

CHAPTER

SIX

GENERALIZATION OF THE IRGNM

As in Chapters 3 and 5 we want to tackle an ill-posed problem

F (u) = g, (6.1)

where the operator F is assumed to be nonlinear and Fréchet-differentiable. In concur-
rence with Chapter 5 we want to consider and iterative scheme, but we want to generalize
the data fidelity and penalty term. This leads to

un+1 ∈ argmin
u∈B

[
S
(

F (un) + F′ [un] (u− un) ; gobs
)
+ αnR (u)

]
(6.2a)

where u0 ∈ B is some initial guess, gobs denotes the observed data, S some suitable data
misfit and R some penalty as in Chapter 3. As in Chapter 5 we will assume that the
regularization parameters (αn)n∈N are chosen in a way such that

α0 ≤ 1, αn ↘ 0, 1 ≤ αn

αn+1
≤ Cdec for all n ∈N. (6.2b)

In this chapter we will present different convergence theorems for the method (6.2) as
well as an error decomposition in case of an additive variational inequality. To the au-
thor’s best knowledge, such convergence rates results do not exist so far. As a first step
towards the convergence analysis we will generalize the classical nonlinearity conditions
(namely the tangential cone condition and the Lipschitz condition) and motivate these
generalizations. The motivation itself will together with the motivation of the variational
inequalities in Section 3.2.1 show that all results are generalizations of the known conver-
gence rates results for the iteratively regularized Gauss-Newton method (5.3a) discussed
in Chapter 5 and therefore include somehow the previous analysis [Bak92,BNS97,Hoh97,
KH10].

6.1 Nonlinearity conditions

In this section we present generalized nonlinearity conditions, which we will use to pro-
vide convergence rates for the iteratively regularized Newton method (6.2). As we have
seen in the last chapter, the degree of nonlinearity has to be restricted to ensure conver-
gence of the iteratively regularized Gauss-Newton method (cf. Theorem 5.1). We used
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6.1: Nonlinearity conditions

there the tangential cone condition (3.13), i.e. we assumed that there exists some η̄ ≥ 0
such that ∥∥F (v)− F (u)− F′ [u] (v− u)

∥∥
Y
≤ η̄ ‖F (v)− F (u)‖Y (6.3)

for all u, v ∈ B. Moreover we had to assume that η̄ is small. This condition has been
introduced by HANKE, NEUBAUER AND SCHERZER [HNS95] and is frequently used for
the analysis of regularization methods for nonlinear inverse problems. Nevertheless,
for many problems of practical interest it is very difficult to show that this condition is
satisfied or not. It is known that if (6.3) holds and F′

[
u†] is singular, then F must be

constant along a certain affine subspace, cf. [HNS95, Prop. 2.1].
Another frequently used assumption is Lipschitz continuity of F′, namely one assumes
that there exists some L > 0 such that∥∥F′ [u]− F′ [v]

∥∥
Y
≤ L ‖u− v‖X (6.4)

for all u, v ∈ B. It can be seen by integration that (6.4) implies immediately∥∥F (v)− F (u)− F′ (u; v− u)
∥∥

Y
≤ L

2
‖v− u‖2

X (6.5)

for all u, v ∈ B. Hence, (6.5) restricts the class of operators F to those, whose first order
Taylor expansion does not only converge superlinearly to F (as u→ v) - which is ensured
by the Fréchet-differentiability - but converges quadratically. If for example the operator
F is twice Fréchet-differentiable with a continuous second Fréchet-derivative F′′, then the
condition (6.4) is fulfilled whenever B is small enough. The Lipschitz assumption (6.4) is
widely used in the context of inverse problems, see e.g. [EHN96, SGG+08, Stü11].
Since many operators in practical applications are smooth, the condition (6.5) seems to be
more reasonable than (6.3). Moreover, taking the ill-posedness of F into account shows
that (6.3) is much more restrictive than (6.5). Nevertheless, (6.5) provides too little infor-
mation for weak source conditions to prove convergence rates.

In our general setup where S does not necessarily fulfill a triangle inequality, the con-
ditions (6.3) and (6.5) must be considered useless since in the general case S is not con-
nected to the Y-norm. Therefore, we have to use generalized formulations, which read
as follows:
ASSUMPTION 6.1 (GENERALIZED TANGENTIAL CONE CONDITION):

(A) There exist constants η (later assumed to be sufficiently small) and Ctc ≥ 1 such that for all
gobs ∈ Y

1
Ctc
S
(

F (v) ; gobs
)
− ηS

(
F (u) ; gobs

)
≤S

(
F (u) + F′ (u; v− u) ; gobs

)
(6.6a)

≤CtcS
(

F (v) ; gobs
)
+ ηS

(
F (u) ; gobs

)
for all u, v ∈ B.

(B) There exist constants η (later assumed to be sufficiently small) and Ctc ≥ 1 such that

1
Ctc
S
(

F (v) ; g†
)
− ηS

(
F (u) ; g†

)
≤S

(
F (u) + F′ (u; v− u) ; g†

)
(6.6b)

≤CtcS
(

F (v) ; g†
)
+ ηS

(
F (u) ; g†

)
for all u, v ∈ B.
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Chapter 6: Generalization of the IRGNM

ASSUMPTION 6.2 (GENERALIZED LIPSCHITZ CONDITION):
(A) There exist constants K (later assumed to be sufficiently small), r > 1 and Clip ≥ 1 such

that for all gobs ∈ Y

1
Clip
S
(

F (v) ; gobs
)
− KDu∗

R

(
v, u†

)r
− KDu∗

R

(
u, u†

)r

≤S
(

F (u) + F′ (u; v− u) ; gobs
)

(6.7a)

≤ClipS
(

F (v) ; gobs
)
+ KDu∗

R

(
v, u†

)r
+ KDu∗

R

(
u, u†

)r
for all u, v ∈ B.

(B) There exist constants K (later assumed to be sufficiently small), r > 1 and Clip ≥ 1 such
that

1
Clip
S
(

F (v) ; g†
)
− KDu∗

R

(
v, u†

)r
− KDu∗

R

(
u, u†

)r

≤S
(

F (u) + F′ (u; v− u) ; g†
)

(6.7b)

≤ClipS
(

F (v) ; g†
)
+ KDu∗

R

(
v, u†

)r
+ KDu∗

R

(
u, u†

)r
for all u, v ∈ B.

Both conditions ensure that the nonlinearity of F fits together with the data misfit func-
tionals S . Obviously, both are fulfilled with η = 0 and Ctc = 1 or K = 0 and Clip = 1
respectively if F is linear. The distinction between the cases (A) and (B) is necessary since
one usually does not want to assume a nonlinearity condition depending on the data,
which might be random. On the other hand, as we will see in the following, for the
case of a norm power S (g; ĝ) = ‖g− ĝ‖p

Y
, (A) as well as (B) are valid if the classical

nonlinearity condition is valid.
Finally we want to mention that the exponent r > 1 in Assumption 6.2 depends only on
the data misfit term S , which is pointed out in Lemma 6.4.
In the following we want to investigate the relation of Assumption 6.1 to the standard
tangential cone condition (6.3) and the relation of Assumption 6.2 to the standard Lip-
schitz assumption (6.5).

LEMMA 6.3 (TANGENTIAL CONE CONDITION):
Assume that S (g; ĝ) = ‖g− ĝ‖p

Y
for some p ≥ 1. If F fulfills the tangential cone condition (6.3)

with η̄ ≥ 0 sufficiently small, then Assumptions 6.1A and 6.1B are satisfied with η = 22p−2η̄p

and

Ctc = max
{

1
21−p − 2p−1η̄p , 2p−1 + η̄p22p−2

}
.

PROOF:
Using the inequality (a + b)p ≤ 2p−1 (ap + bp), a, b ≥ 0 we find that∥∥F (u) + F′ (u; v− u)− g

∥∥p
Y

≤
(∥∥F (u) + F′ (u; v− u)− F (v)

∥∥
Y
+ ‖F (v)− g‖Y

)p

≤2p−1η̄p ‖F (u)− F (v)‖p
Y
+ 2p−1 ‖F (v)− g‖p

Y

≤22p−2η̄p ‖F (u)− g‖p
Y
+
(

2p−1 + η̄p22p−2
)
‖F (v)− g‖p

Y
.
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6.1: Nonlinearity conditions

Moreover, with |a− b|p ≥ 21−pap − bp, a, b ≥ 0 we get∥∥F (u) + F′ (u; v− u)− g
∥∥p

Y

≥
∣∣‖F (v)− g‖Y −

∥∥F (u) + F′ (u; v− u)− F (v)
∥∥

Y

∣∣p
≥21−p ‖F (v)− g‖p

Y
− η̄p ‖F (u)− F (v)‖p

Y

≥21−p ‖F (v)− g‖p
Y
− 2p−1η̄p ‖F (u)− g‖p

Y
− 2p−1η̄p ‖F (v)− g‖p

Y

=
(

21−p − 2p−1η̄p
)
‖F (v)− g‖p

Y
− 2p−1η̄p ‖F (u)− g‖p

Y

for all g ∈ Y. Hence, (6.6) holds true with η = 22p−2η̄p and

Ctc = max
{

1
21−p − 2p−1η̄p , 2p−1 + η̄p22p−2

}
if η̄ is sufficiently small.

LEMMA 6.4 (LIPSCHITZ CONDITION):
Let S (g; ĝ) = ‖g− ĝ‖p

Y
for some p > 1 and R (u) = ‖u− u0‖2

X where X is a Hilbert space.
If F fulfills the Lipschitz condition (6.5), then Assumptions 6.2A and 6.2B are satisfied with
K = 22p−2Lp, r = p and Clip = 2p−1.

PROOF:
First note that in the case of R (u) = ‖u− u0‖2

X for a Hilbert space norm we have

Du∗
R
(
u, u†) = ∥∥u− u†

∥∥2
X

. Using the inequality (a + b)p ≤ 2p−1 (ap + bp), a, b ≥ 0 twice,
we find that ∥∥F (u) + F′ (u; v− u)− g

∥∥p
Y

≤
(∥∥F (u) + F′ (u; v− u)− F (v)

∥∥
Y
+ ‖F (v)− g‖Y

)p

≤2p−1 Lp

2p ‖v− u‖2p
X + 2p−1 ‖F (v)− g‖p

Y

≤2p−1 ‖F (v)− g‖p
Y
+ 22p−2Lp

∥∥∥v− u†
∥∥∥2p

X
+ 22p−2Lp

∥∥∥u− u†
∥∥∥2p

X

=2p−1 ‖F (v)− g‖p
Y
+ 22p−2LpDu∗

R

(
v, u†

)p
+ 22p−2LpDu∗

R

(
u, u†

)p
.

Moreover, with |a− b|p ≥ 21−pap − bp, a, b ≥ 0 we get∥∥F (u) + F′ (u; v− u)− g
∥∥p

Y

≥
∣∣‖F (v)− g‖Y −

∥∥F (u) + F′ (u; v− u)− F (v)
∥∥

Y

∣∣p
≥21−p ‖F (v)− g‖p

Y
− Lp

2p ‖v− u‖2p
X

≥21−p ‖F (v)− g‖p
Y
− 2p−1Lp

∥∥∥u− u†
∥∥∥2p

X
− 2p−1Lp

∥∥∥v− u†
∥∥∥2p

X

=21−p ‖F (v)− g‖p
Y
− 2p−1LpDu∗

R

(
u, u†

)p
− 2p−1LpDu∗

R

(
v, u†

)p

for all g ∈ Y. Hence, (6.7) holds true with K = 22p−2Lp, r = p and Clip = 2p−1.

Note that the term L
2 ‖u− v‖2

X in (6.5) has been replaced by KDu∗
R
(
v, u†)+ KDu∗

R
(
u, u†),

which is necessary since the Bregman distance can not measure the distance between u
and v for u∗ ∈ ∂R

(
u†).

80



Chapter 6: Generalization of the IRGNM

6.2 Convergence rates for a priori stopping rules

With the nonlinearity conditions provided in the last section we are now able to prove
convergence rates for the general case of an iteratively regularized Newton method (6.2)
under a priori stopping rules. We will split the developed theory into three main the-
orems (cf. Theorem 6.5, Theorem 6.6 and Theorem 6.8), depending on the used varia-
tional inequality and nonlinearity condition. Compared to our convergence theorems
for Tikhonov-type regularization (3.2) in Chapter 3, one additional convergence result is
necessary, namely Theorem 6.8 which uses the additive variational inequality (3.11) with
ϕadd = ϕ 1

p
and the generalized Lipschitz assumption (6.7). Theorems 6.5 and 6.6 corre-

spond to the results for Tikhonov-type regularization (3.2) (cf. Theorems 3.28 and 3.30)
and use the generalized tangential cone condition (6.6) due to the general index func-
tions ϕmult and ϕadd respectively. Finally we present our results for the special cases of
logarithmic and Hölder-type source conditions and comment on the relation to previous
work of other authors.
For the whole section we will use the following abbreviations:

dn := Du∗
R

(
un, u†

) 1
2

, (6.8)

sn := S
(

F (un) ; g†
)

. (6.9)

6.2.1 Rates under a tangential cone condition

THEOREM 6.5 (CONVERGENCE RATES UNDER ASSUMPTION 3.24):
Let the Assumptions 3.8, 6.1A or 6.1B and 3.24 hold true, and suppose that η, Du∗

R
(
u0, u†)

and S
(

F (u0) ; g†) are sufficiently small. Then the iterates un defined by (6.2) with exact data
gobs = g† fulfill

Du∗
R

(
un, u†

)
= O

(
ϕ2

mult (αn)
)

, (6.10a)

S
(

F (un) ; g†
)
= O (Θ (αn)) (6.10b)

as n→ ∞. For noisy data define

errn :=
1

Cerr
err (F (un+1)) + 2ηCtcerr (F (un)) + CtcCerrerr

(
g†
)

(6.11a)

in case of Assumption 6.1A or

errn := err (F (un) + F′ (un; un+1 − un))

+Cerrerr
(

F (un) + F′
(
un; u† − un

)) (6.11b)

under Assumption 6.1B, and choose the stopping index n∗ by

n∗ := min
{

n ∈N
∣∣ Θ (αn) ≤ τerrn

}
(6.12)

with a tuning parameter τ ≥ 1. Then (6.10) holds for n ≤ n∗ and the following convergence
rates are valid as errn ↘ 0:

Du∗
R

(
un∗ , u†

)
= O

(
ϕ2

mult

(
Θ−1 (errn∗)

))
, (6.13a)

S
(

F (un∗) ; g†
)
= O (errn∗) . (6.13b)
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6.2: Convergence rates for a priori stopping rules

PROOF:
Due to (3.15) we have

R (un+1)−R
(

u†
)
= Du∗

R

(
un+1, u†

)
−
〈

u∗, u† − un+1

〉
≥ d2

n+1 − βdn+1ϕmult

(
sn+1

d2
n+1

)
. (6.14)

From the minimality condition (6.2a) with u = u† we obtain

αn

(
R (un+1)−R

(
u†
))

+ S
(

F (un) + F′ (un; un+1 − un) ; gobs
)

≤S
(

F (un) + F′
(

un; u† − un

)
; gobs

)
, (6.15)

and putting (6.14) and (6.15) together we find that

αnd2
n+1 + S

(
F (un) + F′ (un; un+1 − un) ; gobs

)
≤S

(
F (un) + F′

(
un; u† − un

)
; gobs

)
+ αnβdn+1ϕmult

(
sn+1

d2
n+1

)
. (6.16)

• In the case of 6.1B we use (3.4), which yields

αnd2
n+1 +

1
Cerr
S
(

F (un) + F′ (un; un+1 − un) ; g†
)

≤CerrS
(

F (un) + F′
(

un; u† − un

)
; g†
)
+ αnβdn+1ϕmult

(
sn+1

d2
n+1

)
+ errn

and (6.6b) with v = u†, u = un leads to

αnd2
n+1 +

1
Cerr
S
(

F (un) + F′ (un; un+1 − un) ; g†
)

≤ηCerrsn + αnβdn+1ϕmult

(
sn+1

d2
n+1

)
+ errn.

By (6.6b) with v = un+1, u = un we obtain

αnd2
n+1 +

1
CtcCerr

sn+1 ≤ η

(
Cerr +

1
Cerr

)
sn + αnβdn+1ϕmult

(
sn+1

d2
n+1

)
+ errn

for all n ∈N.

• In the case of 6.1A we are able to apply (6.6a) with v = u†, u = un and (6.6a) with
v = un+1 and u = un to (6.16) to conclude

αnd2
n+1 +

1
Ctc
S
(

F (un+1) ; gobs
)

≤2ηS
(

F (un) ; gobs
)
+ CtcS

(
F
(

u†
)

; gobs
)
+ αnβdn+1ϕmult

(
sn+1

d2
n+1

)
.
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Due to (3.4) and S
(

g†; g†) = 0 this yields

αnd2
n+1 +

1
CtcCerr

sn+1 ≤ 2ηCerrsn + αnβdn+1ϕmult

(
sn+1

d2
n+1

)
+ errn

for all n ∈N.

Using 2Cerr ≥ Cerr +
1

Cerr
we find that both in case of 6.1A and 6.1B a recursive error

estimate of the form

αnd2
n+1 +

1
CtcCerr

sn+1 ≤ 2ηCerrsn + αnβdn+1ϕmult

(
sn+1

d2
n+1

)
+ errn (6.17)

is valid for all n ∈N.
Assume in the following that errn is sufficiently small to ensure n∗ > 0. We will now
prove by induction that (6.17) implies

dn ≤ C1ϕmult (αn) , (6.18)

sn ≤ C2Θ (αn) (6.19)

for all n ≤ n∗ in case of noisy data and for all n ∈ N in case of exact data with suitable
constants C1, C2 ≥ 0. For n = 0 (6.18) and (6.19) are guaranteed by the assumption that
d0 and s0 are small enough. For the induction step we observe that (6.17) together with
(6.12) and the induction hypothesis for n ≤ n∗ − 1 implies

αnd2
n+1 +

1
CtcCerr

sn+1 ≤ Cη,τΘ (αn) + αnβdn+1ϕmult

(
sn+1

d2
n+1

)
where Cη,τ = 2ηC2Cerr + 1/τ. Now we distinguish between two cases:

Case 1: αnβdn+1ϕmult

(
sn+1
d2

n+1

)
≤ Cη,τΘ (αn).

In that case we find
αnd2

n+1 +
1

CtcCerr
sn+1 ≤ 2Cη,τΘ (αn)

which by Θ (t) /t = ϕ2
mult (t), (3.22) and (3.23) implies

dn+1 ≤
√

2Cη,τ ϕmult (αn) =
√

2Cη,τ ϕmult

(
αn

αn+1
αn+1

)
≤
√

2Cη,τCdecϕmult (αn+1) ,

sn+1 ≤ 2CtcCerrCη,τΘ (αn) ≤ 2CtcCerrCη,τC3
decΘ (αn+1) .

The assertions now follow by choosing C1 and C2 large enough such that
√

2Cη,τCdec ≤
C1 and 2CtcCerrCη,τC3

dec ≤ C2.

Case 2: αnβdn+1ϕmult

(
sn+1
d2

n+1

)
> Cη,τΘ (αn).

In that case we find

αnd2
n+1 +

1
CtcCerr

sn+1 ≤ 2αnβdn+1ϕmult

(
sn+1

d2
n+1

)
which allows us to use Lemma 3.27. This yields (6.18) and (6.19).
Finally, (6.10) is already proven and (6.13) follows from inserting (6.12) into (6.18) and
(6.19) using (3.21).
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Now we will prove convergence rates of the iteratively regularized Newton method (6.2)
under an additive variational inequality (3.11). As opposed to the case of a multiplicative
variational inequality (3.15) we will moreover gain an error decomposition as in the case
of Tikhonov-type regularization (3.2), which will allow for an a posteriori stopping rule.
As a nonlinearity condition we will again use the generalized tangential cone condition
(6.6), which due to Table 3.1 also helps to motivate the general form of (3.11). The special
case ϕadd (t) = t

1
2 will be considered in Section 6.2.2 in combination with the generalized

Lipschitz assumption (6.7).

THEOREM 6.6 (CONVERGENCE RATES UNDER ASSUMPTION 3.15):
Let Assumptions 3.8, 6.1A or 6.1B and 3.15 hold true. Then the error of the iterates un defined by
(6.2) can be bounded by

(1− β) d2
n+1 +

1
2CerrCtcαn

sn+1 ≤ 2ηCerr
sn

αn
+ 2CtcCerr (−ϕadd)

∗
(
− 1

αn

)
+

errn

αn
(6.20)

for all n ∈N where errn is given as in (6.11). If there exists moreover an upper bound err ≥ errn
for all n ∈N and η and S

(
F (u0) ; g†) are sufficiently small, the estimate

sn ≤ γnl

(
2CtcCerrαn (−ϕadd)

∗
(
− 1

αn

)
+ err

)
(6.21)

holds true for all n ∈N0 with

γnl =
2CtcCerrC2

dec

1− 4ηCtcC2
errC2

dec
.

This yields for exact data the rates

Du∗
R

(
un, u†

)
= O

(
(−ϕadd)

∗
(
− 1

αn

))
, (6.22a)

S
(

F (un) ; g†
)
= O

(
αn (−ϕadd)

∗
(
− 1

αn

))
(6.22b)

as n→ ∞. In case of noisy data we choose

n∗ = min

{
n ∈N

∣∣∣∣∣ 1
αn
≥ − inf ∂ (−ϕadd) (err)

}
(6.23)

and find that the estimates (6.22) are valid for n ≤ n∗ and it holds

Du∗
R

(
un∗ , u†

)
= O (ϕadd (err)) (6.24)

as err↘ 0.

REMARK 6.7:
The stopping rule (6.23) is due to the same problem we had in Section 3.3: The optimal
choice requires 1

αn∗
∈ −∂ (−ϕadd) (err), but the typical case is 1

αn
/∈ −∂ (−ϕadd) (err) for

all n ∈N. It can be shown similarly to Lemma 3.42 that under (6.23) it holds

ϕadd (σ)−
Cdec

αn∗−1
σ ≤ Cdecϕadd (err)− Cdec

αn∗−1
err (6.25)

for all σ ≥ 0.
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For (6.25) to be meaningful, we assume here and in the following proof that err is suffi-
ciently small to ensure n∗ > 0.
PROOF (OF THEOREM 6.6):
Similar to the proof of Theorem 6.5 the assumptions imply the iterative estimate

αn (1− β) d2
n+1 +

1
CtcCerr

sn+1 ≤ 2ηCerrsn + αn ϕadd (sn+1) + errn

for all n ∈N. Rearranging terms and dividing by αn yields

(1− β) d2
n+1 +

1
2CtcCerrαn

sn+1 ≤ 2ηCerr
sn

αn
+ ϕadd (sn+1)−

1
2CtcCerrαn

sn+1 +
errn

αn

≤ 2ηCerr
sn

αn
+ sup

σ≥0

(
ϕadd (σ)−

1
2CtcCerrαn

σ

)
+

errn

αn

= 2ηCerr
sn

αn
+ (−ϕadd)

∗
(
− 1

2CtcCerrαn

)
+

errn

αn

≤ 2ηCerr
sn

αn
+ 2CtcCerr (−ϕadd)

∗
(
− 1

αn

)
+

errn

αn

where we used the definition of the Fenchel conjugate and (3.27). Therefore, (6.20) is
proven. From (6.20) we conclude using the bound errn ≤ err that

sn+1 ≤ 4CtcC2
errηsn + 4C2

tcC2
errαn (−ϕadd)

∗
(
− 1

αn

)
+ 2CtcCerrerr

for all n ∈ N. Now we prove (6.21) by induction: For n = 0 the assertion is true since
s0 was assumed to be sufficiently small. Now let (6.21) hold for some n. Then by the
inequality above we find that

sn+1 ≤ 4CtcC2
errηsn + 4C2

tcC2
errαn (−ϕadd)

∗
(
− 1

αn

)
+ 2CtcCerrerr

≤ 2CtcCerr (2Cerrηγnl + 1)
(

2CtcCerrαn (−ϕadd)
∗
(
− 1

αn

)
+ err

)
≤ 2CtcCerrC2

dec (2Cerrηγnl + 1)
(

2CtcCerrαn+1 (−ϕadd)
∗
(
− 1

αn+1

)
+ err

)
where we used (6.2b), the monotonicity of σ 7→ (−ϕadd)

∗ (− 1
σ

)
(cf. Remark 3.29) and

(3.27). The definition of γnl implies 2CtcCerrC2
dec (2Cerrηγnl + 1) ≤ γnl and hence the as-

sertion is shown.
Plugging (6.20) and (6.21) together we find

(1− β) d2
n+1 +

1
CtcCerr

sn+1

αn
≤ (1 + 2ηCerrγnl)

(
2CtcCerr (−ϕadd)

∗
(
− 1

αn

)
+

err
αn

)
(6.26)

for all n ∈ N. In the noise-free case it holds err = 0 and hence we obtain (6.22) by using
(3.27). Otherwise we find from (3.27) and (6.25) that

(−ϕadd)
∗
(
− 1

αn∗−1

)
≤ Cdec (−ϕadd)

∗
(
− Cdec

αn∗−1

)
= Cdec sup

σ≥0

(
ϕadd (σ)−

Cdec

αn∗−1
σ

)

≤ C2
decϕadd (err)−

C2
dec

αn∗−1
err.
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Inserting this into (6.26) with n = n∗ − 1 and dropping the second term on the left-hand
side we have

d2
n∗ ≤ (1 + 2ηCerrγnl)

(
2CtcCerrC2

decϕadd (err) +
err

αn∗−1

(
1− 2CtcCerrC2

dec
))

≤ (1 + 2ηCerrγnl) 2CtcCerrC2
decϕadd (err)

using 2CtcCerrC2
dec ≥ 1 which shows (6.24).

6.2.2 Rates under a Lipschitz assumption

In case of Assumption (3.15) with ϕadd (t) = t
1
2 and S (g; ĝ) = ‖g− ĝ‖2

Y we expect to
obtain convergence rates also under a Lipschitz assumption instead of the tangential cone
condition. We will show in the next theorem, that this is also true for more general S .

THEOREM 6.8 (CONVERGENCE RATES UNDER A LIPSCHITZ ASSUMPTION):
Let Assumptions 3.8, 6.2A or 6.2B and 3.15 with ϕadd = β̃ϕ 1

p
where p ∈ (1, r] hold true and

assume that Du∗
R
(
u0, u†) , β̃ and K are sufficiently small. In this setup, ϕ2

add does not need to be
concave. Then for exact data we obtain for the minimizers of (6.2) the convergence rate

Du∗
R

(
un∗ , u†

)
= O

(
α

1
p−1
n

)
and in case of noisy data with the a-priori stopping rule

n∗ = min
{

n ∈N
∣∣ α

p
p−1
n ≤ τerrn

}
(6.27)

for sufficiently large τ > 0 where

errn = err (F (un+1)) + ClipCerrerr
(

g†
)

in case of 6.2A and

errn = err
(

F
(
un + F′ (un, un+1 − un)

))
+ Cerrerr

(
F
(

u†
)
+ F′

(
un, u† − un

))
in case of 6.2B we obtain

Du∗
R

(
un∗ , u†

)
= O

(
err

1
p
n∗

)
.

PROOF:
Similarly to the proof of Theorem 6.5 we obtain a recursive error estimate of the form

αn (1− β) d2
n+1 +

1
CerrClip

sn+1 ≤ 2CerrKd2r
n + Kd2r

n+1 + αn β̃s
1
p
n+1 + τ−1α

p
p−1
n

for all n ≤ n∗ − 1. Applying Young’s inequality and rearranging terms leads to

αn (1− β) d2
n+1 +

(
1

CerrClip
− ε

β̃

p

)
sn+1 ≤ 2CerrKd2r

n + Kd2r
n+1 +

(
β̃

q

(
1
ε

) q
p

+ τ−1

)
α

p
p−1
n .
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for all n ≤ n∗ − 1 where q = 1
1− 1

p
= p

p−1 . Now choose ε > 0 such that the second term on

the left-hand side vanishes, i.e. 1
CerrClip

= ε
β̃
p . Moreover we divide by α

p
p−1
n+1 to find

(
αn

αn+1

)
d2

n+1

α
1

p−1
n+1

≤2CerrK
1− β

d2r
n

α
p

p−1
n+1

+
K

1− β

d2r
n+1

α
p

p−1
n+1

+
1

1− β

(
β̃

q

(
1
ε

) q
p

+
1
τ

)(
αn

αn+1

) p
p−1

=
2CerrK
1− β

 d2
n

α
1

p−1
n

r (
αn

αn+1

) r
p−1

α
r−p
p−1
n+1 +

K
1− β

d2
n+1

α
1

p−1
n+1

r

α
r−p
p−1
n+1

+
1

1− β

(
p− 1

p

(
CerrClip

p

) 1
p−1

β̃
p

p−1 +
1
τ

)(
αn

αn+1

) p
p−1

for all n ≤ n∗ − 1. Due to (6.2b) as well as r−p
p−1 ≥ 0 which holds true by r ≥ p and p > 1

we hence find for γn = α
− 1

p−1
n d2

n the estimate

(
1− K

1− β
γr−1

n+1

)
γn+1 ≤

2CerrK
1− β

C
r

p−1

dec γr
n +

C
p

p−1

dec
1− β

(
p− 1

p

(
CerrClip

p

) 1
p−1

β̃
p

p−1 +
1
τ

)
(6.28)

for all n ≤ n∗ − 1. This estimate is of the same form as [KH10, eq. (45)] and hence we can
deduce convergence rates in the same manner. For sufficiently small A, γ̄, ξ̄ > 0 it can
by seen via differentiation that the function h : (0, γ̄) →

(
0, ξ̄
)
, h (γ) :=

(
1− Aγr−1) γ is

strictly monotonically increasing and invertible with

h−1 (ξ) ≤ 2ξ, ξ ∈
(
0, ξ̄
)

. (6.29)

Now let γ̄ be so small that the right-hand side of (6.28) with γn replaced by γ̄ is smaller
than ξ̄. Then γ0 ≤ γ̄ holds true ifDu∗

R
(
u0, u†) is sufficiently small as given in the assump-

tion. Now consider the function h from above with A = (1− β)−1 K which is sufficiently
small to ensure (6.29) since K was assumed to be sufficiently small. If γn ≤ γ̄ holds true
for some n ≤ n∗ − 1 then by applying (6.29) to (6.28) we find

γn+1 ≤
4CerrK
1− β

C
r

p−1

dec γr
n +

2C
p

p−1

dec
1− β

(
p− 1

p

(
CerrClip

p

) 1
p−1

β̃
p

p−1 +
1
τ

)

≤ 4CerrK
1− β

C
r

p−1

dec γ̄r +
1
2

γ̄

if β̃ is sufficiently small and τ is sufficiently large. Moreover the first term on the right-
hand side is less or equal 1

2 γ̄ if K is sufficiently small. Thus it holds γn+1 ≤ γ̄ and hence
γn ≤ γ̄ for all n ≤ n∗. This yields

d2
n∗ = γn∗α

1
p−1
n∗ ≤ γ̄α

1
p−1
n∗ = O

(
α

1
p−1
n∗

)
Due to (6.27) we get

d2
n∗ = O

(
α

1
p−1
n∗

)
= O

(
err

1
p
n∗

)
which proves the assertion.
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REMARK 6.9:
Note that the above result is the only one where we needed to assume that the constant
in the second term of the additive variational inequality is sufficiently small.

REMARK 6.10 (NONLINEARITY CONDITIONS):
In the case of a norm power S (g; ĝ) = ‖g− ĝ‖r

Y, r > 1, Theorem 6.8 shows that we can
weaken the nonlinearity condition if the source condition is sufficiently strong. This fact
is known from the classical theory. In case of a general data fidelity term S it remains un-
clear if the generalized Lipschitz assumption (6.7) is indeed weaker than the generalized
tangential cone condition (6.6).
Especially for the case of Poisson data and S as defined in (2.14) we do not know if those
assumptions are appropriate and either of them is fulfilled for the nonlinear operators
occurring in our applications.

6.2.3 Special cases and connections to previous results

Before we comment on the relations between our results and the results for norm powers
mentioned in Chapter 5 we will present the implications of our results for the special
cases of Hölder-type and logarithmic source conditions.

Hölder-type source conditions

If the index function ϕ in (3.9) is given by ϕ = ϕν as in (3.10a) then the corresponding
functions ϕmult and ϕadd have already been calculated in Section 3.2.3. This leads to the
following convergence rates:

THEOREM 6.11 (CONVERGENCE RATES FOR HÖLDER-TYPE SOURCE CONDITIONS):
(a) Under the assumptions of Theorem 6.5 with ϕmult = ϕν we obtain the convergence rate

Du∗
R

(
un∗ , u†

)
= O

(
err

2ν
2ν+1
n∗

)
, errn∗ ↘ 0.

(b) Under the assumptions of Theorem 6.6 with ϕadd = ϕκ we obtain the convergence rate

Du∗
R

(
un∗ , u†

)
= O (errκ) , err↘ 0.

(c) Under the assumptions of Theorem 6.8 we obtain the convergence rate

Du∗
R

(
un∗ , u†

)
= O

(
err

1
p
n∗

)
, errn∗ ↘ 0.

PROOF:
This follows directly from the mentioned Theorems and by plugging in the calculations
from Section 3.2.3.

Now we will specify this result for the quadratic Hilbert space case:

COROLLARY 6.12 (QUADRATIC HILBERT SPACE CASE):
Assume that S (g; ĝ) = ‖g− ĝ‖2

Y and R (u) = ‖u− u0‖2
X for Hilbert spaces X and Y and

assume that F : X → Y is Fréchet differentiable and fulfills the tangential cone condition (6.3)
with sufficiently small η̄. Let furthermore u0 be sufficiently close to u†. Then a range condition
(3.9) with ϕ = ϕν where ν ∈

(
0, 1

2

]
and a known upper bound

∥∥g† − gobs
∥∥

Y
≤ δ imply for
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a stopping parameter n∗ chosen such that n∗ is the first natural number with αn ≤ δ
2

2ν+1 the
following convergence rate: ∥∥∥u† − un∗

∥∥∥
X
= O

(
δ

2ν
1+2ν

)
, δ↘ 0.

PROOF:
First of all, the tangential cone condition (6.3) implies by Lemma 6.3 the generalized form
(6.6b) with some constant Ctc and a parameter η which is small if η̄ from (6.3) is small.
As already mentioned, Assumption 3.8 is fulfilled with err ≡ δ2, s ≡ 0 and Cerr = 2.
The term errn from (6.11b) is hence given by err = 3δ2 and the assumed range condition
(3.9) with ϕ = ϕν yields by Lemma 3.20 a multiplicative variational inequality (3.15)
with ϕmult = ϕν. To apply Theorem 3.28 we note that (3.16) is fulfilled for ν ∈

(
0, 1

2

]
and

that our stopping rule coincides with (6.12) used in the Theorem. Therefore we obtain
convergence rates as in the assertion, which are known to be optimal in the linear case.

Convergence rates for the iteratively regularized Gauss-Newton method for Hölder-type
source conditions with ν < 1

2 have been obtained initially in [BNS97] under a slightly
different nonlinearity condition.

Moreover, Theorem 6.8 also states rates of convergence under a possibly weaker nonlin-
earity condition. This applies to the case of norm powers as follows:

REMARK 6.13 (APPLICATION TO THE CASE OF NORM POWERS):
Let us briefly apply Theorem 6.8 to the case where S is given by the p-th power of a
Hilbert norm, i.e. let S (g1; g2) = ‖g1 − g2‖p

Y
for some p > 1 and R be the square of a

Hilbert norm. Moreover assume that an upper bound
∥∥g† − gobs

∥∥
Y
≤ δ is given. Then

Lemma 6.4 shows that the usual Lipschitz condition (6.5) implies Assumption 6.2A (as
well as 6.2B) with r = p, Clip = 2p−1 and K = 22p−2Lp. Moreover, Assumption 3.15 with
ϕadd = β̃ϕ 1

p
holds true if the spectral source condition (3.9) with ϕ = ϕ 1

2
is valid. This can

be seen by the help of Lemma 3.20 with ϕ = ϕ 1
2

and a similar argument as in the proof of
Lemma 3.21.
By again choosing err ≡

∥∥g† − gobs
∥∥p

Y
and Cerr = 2p−1, we obtain for

n∗ = min
{

n ∈N
∣∣ αn ≤ τ̄δp−1

}
with sufficiently large τ̄ ≥ 1 the following convergence rate provided that ‖ω‖ is suffi-
ciently small:

Du∗
R

(
un∗ , u†

)
= O (δ)

This result covers in parts the initial work of BAKUSHINSKIĬ [Bak92] on convergence rates
for the iteratively regularized Gauss-Newton method.

Logarithmic source conditions

If the index function ϕ in (3.9) is given by ϕ = ϕ̄p as in (3.10a) then the corresponding
functions ϕmult and ϕadd have already been calculated in Section 3.2.3. This leads to the
following convergence rates:

THEOREM 6.14 (CONVERGENCE RATES FOR LOGARITHMIC SOURCE CONDITIONS):
• Under the Assumptions of Theorem 3.28 with ϕmult = ϕ̄p we obtain the convergence rate

Du∗
R

(
un∗ , u†

)
= O

(
ϕ̄2p (errn∗)

)
, errn∗ ↘ 0.
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6.2: Convergence rates for a priori stopping rules

• Under the Assumptions of Theorem 3.30 with ϕadd = ϕ̄p we obtain the convergence rate

Du∗
R

(
un∗ , u†

)
= O

(
ϕ̄p (err)

)
, err↘ 0.

PROOF:
This is obtained by plugging in the functions calculated in Section 3.2.3.

Now we will specify this result for the quadratic Hilbert space case:

COROLLARY 6.15 (QUADRATIC HILBERT SPACE CASE):
Assume that S (g; ĝ) = ‖g− ĝ‖2

Y and R (u) = ‖u− u0‖2
X for Hilbert spaces X and Y and

assume that F : X → Y is Fréchet differentiable and fulfills the tangential cone condition (6.3)
with sufficiently small η̄. Let furthermore u0 be sufficiently close to u†. Then a range condition
(3.9) with ϕ = ϕ̄p where p > 0 and a known upper bound

∥∥g† − gobs
∥∥

Y
≤ δ imply for a

stopping parameter n∗ chosen such that n∗ is the first natural number with αn ϕ̄2p (αn) ≤ δ the
following convergence rate:∥∥∥un∗ − u†

∥∥∥
X
= O

(
ϕ̄p (δ)

)
, δ↘ 0.

PROOF:
As before the tangential cone condition (6.3) implies by Lemma 6.3 the generalized form
(6.6b) with some constant Ctc and a parameter η which is small if η̄ from (6.3) is small.
As already mentioned, Assumption 3.8 is fulfilled with err ≡ δ2, s ≡ 0 and Cerr = 2.
The term errn from (6.11b) is hence given by err = 3δ2 and the assumed range condition
(3.9) with ϕ = ϕ̄p yields by Lemma 3.20 a multiplicative variational inequality (3.15)
with ϕmult = ϕ̄p. To apply Theorem 3.28 we note that (3.16) is fulfilled trivially and
that our stopping rule coincides with (6.12) used in the Theorem. Therefore we obtain
convergence rates as in the assertion, which are known to be optimal in the linear case.

Convergence rates of this type have first been proven by HOHAGE [Hoh97] under a
slightly different nonlinearity condition.

The general case for norm powers

Finally we will now relate our results to the case of general norm powers and general
source conditions as we presented them in Chapter 5.

COROLLARY 6.16 (CASE OF GENERAL NORM POWERS):
Assume that S (g; ĝ) = ‖g− ĝ‖r

Y and R (u) = ‖u− u0‖r
X for Banach spaces X and Y and

r, p > 1. Assume moreover that F : X → Y is Fréchet differentiable and fulfills the tangential
cone condition (6.3) with sufficiently small η̄. Let furthermore u0 be sufficiently close to u† and
Assumption 3.24 hold true. Then a known upper bound

∥∥g† − gobs
∥∥

Y
≤ δ implies for a proper

chosen stopping parameter n∗ the convergence rate

Du∗
R

(
un∗ , u†

)
= O

(
ϕ2

mult

(
Θ−1 (δr)

))
, δ↘ 0

with Θ as in (3.19).

PROOF:
In view of the fact that Assumption 3.8 is fulfilled with err ≡ δr, this follows from Lemma
6.3 and Theorem 6.5.
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In comparison with Theorem 5.5, our nonlinearity condition is weaker as discussed in
Section 6.1. Moreover our variational inequality (3.15) does not contain derivatives of F
as (5.12) does. Nevertheless, our variational inequality contains different powers of the
Y-norm depending on the exponent r in the data fidelity term. This weakens or tightens
the condition depending if r < 2 or r > 2. The variational inequalities coincide for r = 2,
and in this case also the obtained rates do.

6.3 Convergence rates with an a posteriori stopping rule

As in Section 3.3 we now want to apply the Lepskiı̆ balancing principle in case of an ad-
ditive variational inequality (3.11). The result of this section (cf. Theorem 6.19) is a slight
generalization of [HW11, Thm. 4.2] and is based on the more general representation of
the approximation error introduced by GRASMAIR [Gra10a] and FLEMMING [Fle11].
The way we introduced the Lepskiı̆ principle in Section 3.3 covers only an error decom-
position with two terms, where in case of an iteratively regularized Newton method (6.2)
usually three terms occur, namely the well-known approximation and propagated data
noise error and additionally a nonlinearity error. As in Section 3.3 we need to restrict R
such that the error measure in X is a metric. We will again assume that there exists some
constant Cbd < ∞ and some exponent q > 1 such that∥∥∥u− u†

∥∥∥q

X
≤ CbdDu∗

R

(
u, u†

)
for all u ∈ B. (6.30)

The next Lemma generalizes the Lepskiı̆-type balancing principle as done by BAUER ET

AL. [BHM09] to the aforementioned case of three error terms:

LEMMA 6.17 (LEPSKIĬ-TYPE BALANCING PRINCIPLE WITH THREE TERMS):
Assume that a sequence (un)n∈N is given such that∥∥∥un − u†

∥∥∥
X
≤ Φnl (n) + Φapp (n) + Φnoi (n) (6.31)

holds true for all n ∈N where

(a) Φnoi is a non-decreasing known function fulfilling

Φnoi (n + 1) ≤ DΦnoi (n) for all n ∈N, (6.32)

(b) Φapp is a non-increasing unknown function and

(c) Φnl is an unknown function fulfilling

Φnl (n) ≤ γnl
(
Φnoi + Φapp

)
for all n ∈N (6.33)

with some constants D ≥ 1, γnl > 0.
Then the Lepskiı̆-type balancing principle

Nmax := min
{

n ∈N
∣∣ Φnoi (n) ≥ 1

}
, (6.34a)

nbal := min
{

n ≤ Nmax
∣∣ ‖un − um‖X ≤ 4 (1 + γnl)Φnoi (m) for all n < m ≤ Nmax

}
(6.34b)

leads under the additional condition Φapp (Nmax) ≤ 1 to the estimate∥∥∥unbal − u†
∥∥∥

X
≤ 6D (1 + γnl) min

n=1,...,Nmax

(
Φapp (n) + Φnoi (n)

)
. (6.35)
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PROOF:
Inserting (6.33) into (6.31) yields∥∥∥un − u†

∥∥∥
X
≤ (1 + γnl)

(
Φapp (n) + Φnoi (n)

)
for alln ∈N. (6.36)

Now define m := Nmax and for j = 1, ..., m set

ψ (j) := 2 (1 + γnl)Φnoi (Nmax + 1− j) ,

φ (j) := 2 (1 + γnl)Φapp (Nmax + 1− j) .

Then

• φ is unknown and non-decreasing and

• ψ is known and non-increasing and fulfills by (6.32)

ψ (i) = 2 (1 + γnl)Φnoi (Nmax + 1− i)

= 2 (1 + γnl)Φnoi (Nmax + 1− (i− 1) + 1)

≤ D2 (1 + γnl)Φnoi (Nmax + 1− (i− 1))

= Dψ (i + 1)

for all 1 ≤ i ≤ m− 1.

Moreover, by Φapp (Nmax) ≤ 1 we find φ (1) ≤ ψ (1) and due to (6.31) it holds with
xj := uNmax+1−j, j = 1, ..., Nmax the estimate∥∥∥xj − u†

∥∥∥
X
≤ 1

2
(ψ (j) + φ (j)) , 1 ≤ j ≤ m.

Therefore, all assumptions of Lemma 3.40 are fulfilled and we find for the index

j̄ = max
{

j ≤ m
∣∣ ∥∥xi − xj

∥∥
X
≤ 2ψ (i) for all i < j

}
. (6.37)

the estimate ∥∥∥x j̄ − u†
∥∥∥

X
≤ 3D min {φ (j) + ψ (j) | j ∈ {1, ..., m}} . (6.38)

Now some easy index manipulations show that the indices from (6.37) and (6.34) are
related via j̄ = Nmax + 1− nbal and hence we have

x j̄ = unbal .

Therefore, (6.38) implies (6.35) and the assertion is proven.

To apply this principle to our case, let us rewrite the error decomposition already ob-
tained in Theorem 6.6:
LEMMA 6.18 (ERROR DECOMPOSITION UNDER ASSUMPTION 3.15):
Let Assumptions 3.8, 6.1A or 6.1B and 3.15 with β ∈

[
0, 1

2

]
hold true. Moreover let (6.30) be

fulfilled and assume that there exists a uniform upper bound errn ≤ err for all n ∈N where errn
is given as in (6.11). Then the error of the iterates un defined by (6.2) can be bounded by the sum
of an approximation error bound Φapp (n), a propagated data noise error bound Φnoi (n)
and a nonlinearity error bound Φnl (n),∥∥∥un − u†

∥∥∥
X
≤ Φnl (n) + Φapp (n) + Φnoi (n) (6.39)
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where

Φnl (n) := (4ηCerrCbd)
1
q

(
sn

αn

) 1
q

,

Φapp (n) := (4CtcCerrCbd)
1
q (−ϕadd)

∗
(
− 1

αn

) 1
q

,

Φnoi (n) := (2Cbd)
1
q

(
err
αn

) 1
q

.

Moreover, if η and S
(

F (u0) ; g†) are sufficiently small, the estimate

Φnl (n) ≤ γ̄nl
(
Φnoi (n) + Φapp (n)

)
(6.40)

holds true for all n ∈N0 with

γ̄nl = (2ηCerrγnl)
1
q =

(
4ηCtcC2

errC2
dec

1− 4ηCtcC2
errC2

dec

) 1
q

. (6.41)

PROOF:
Under the made assumptions Theorem 6.6 implies by (6.20) that

(1− β) d2
n+1 +

1
2CerrCtcαn

sn+1 ≤ 2ηCerr
sn

αn
+ 2CtcCerr (−ϕadd)

∗
(
− 1

αn

)
+

errn

αn

for all n ∈ N. Now by rearranging, using (6.30), β ∈
[
0, 1

2

]
and errn ≤ err we find

especially∥∥∥un − u†
∥∥∥q

X
≤ 4ηCerrCbd

sn

αn
+ 4CtcCerrCbd (−ϕadd)

∗
(
− 1

αn

)
+ 2Cbd

err
αn

for all n ∈ N. Taking the q-th root and using the concavity of t 7→ t
1
q this shows (6.39).

Moreover by Theorem 6.6 it holds (6.21), i.e.

sn ≤ γnl

(
2CtcCerrαn (−ϕadd)

∗
(
− 1

αn

)
+ err

)
for all n ∈N0. Multiplying this estimate with 4ηCerrCbd

αn
and taking the q-th root yields

Φnl (n) ≤ (2ηCerrγnl)
1
q

(
4CtcCerrCbd (−ϕadd)

∗
(
− 1

αn

)
+ 2Cbd

err
αn

) 1
q

for all n ∈N0. Again using the concavity of t 7→ t
1
q this shows (6.40).

THEOREM 6.19 (CONVERGENCE RATES FOR A LEPSKIĬ-TYPE STOPPING RULE):
Let the assumptions of Lemma 6.18 hold true. Then the Lepskiı̆ balancing principle (6.34) leads to
the convergence rate ∥∥∥unbal − u†

∥∥∥q

X
= O (ϕadd (err)) , err↘ 0.
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6.3: Convergence rates with an a posteriori stopping rule

PROOF:
Assume in the following that err is sufficiently small. Then Nmax is sufficiently large to
ensure Φapp (Nmax) ≤ 1. Moreover, from Lemma 6.18 and Remark 3.29 we find that all
assumptions of Lemma 6.17 are fulfilled and hence it holds∥∥∥unbal − u†

∥∥∥
X
≤ 6 (1 + γnl)C

1
q
dec min

1≤n≤Nmax

(
Φapp (n) + Φnoi (n)

)
.

Taking the q-th exponent and using (a + b)q ≤ 2q (aq + bq) it follows that∥∥∥unbal − u†
∥∥∥q

X
≤ 12q (1 + γnl)

q Cdec min
1≤n≤Nmax

(
Φapp (n)

q + Φnoi (n)
q)

≤ 4 · 12q (1 + γnl)
q CtcCerrCbdCdec min

1≤n≤Nmax

(
(−ϕadd)

∗
(
− 1

αn

)
+

err
αn

)
.

If we can show that n∗ − 1 with n∗ as in (6.23) is an element of {1, ..., Nmax} then the
assertion follows as in the proof of Theorem 6.6 from (6.25). Note that by definition it
holds

1
αn∗−1

< − inf ∂ (−ϕ) (err)

and hence

Φnoi (n∗ − 1) = (2Cbd)
1
q

(
err

αn∗−1

) 1
q

< (2Cbd)
1
q (err · (− inf ∂ (−ϕ) (err)))

1
q .

As in the proof of Lemma 3.42 it can be seen that the right-hand side tends to 0 as err↘ 0
and so we may assume that Φnoi (n∗ − 1) < 1, which proves n∗ − 1 ≤ Nmax and hence
the assertion.
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Chapter 7: Iteratively regularized Newton methods with Poisson data

CHAPTER

SEVEN

ITERATIVELY REGULARIZED NEWTON METHODS WITH
POISSON DATA

In this chapter we will apply the results on iteratively regularized Newton methods (6.2a)
to the case of Poisson data as discussed in Chapter 2 where the data fidelity term S
is chosen to be a variant of the negative log-likelihood. These results for the case of a
Poisson process as data are new in the contents as well as in the presented way to our
best knowledge.
For the whole chapter let the data fidelity terms S

(
·; g†) and S

(
·; gobs) w.r.t. exact and

noisy data again be given by (2.14) respectively with some fixed e > 0. As in Chapter 4
we will use only Assumption 3.15 as smoothness condition on u†, but similar results can
be obtained under Assumption 3.24.

7.1 Preliminaries

As in Chapter 4 we want to motivate our smoothness conditions on u† in terms of vari-
ational inequalities before presenting the results. This is done in the same manner as
Corollaries 4.6, 4.7 and 4.8 do, but a motivation for a linear operator is not necessary in
this section. Moreover, we will not use the classical tangential cone condition (6.3), but
the generalized version (6.6b), which is used anyway in our convergence analysis.

COROLLARY 7.1:
Let X be a Hilbert space and let Assumptions 2.7 and 6.1B be fulfilled. If the spectral source
condition (3.9) holds true with some general ϕ such that ϕ2 is concave, then Assumption 3.15
is valid with ϕadd as specified in Theorem 3.18 (up to a multiplicative constant) and R (u) =

‖u− u0‖2
X and S = KLe.

PROOF:
Theorem 3.18 yields an additive variational inequality of the form〈

u∗, u† − u
〉
≤ β

∥∥∥u− u†
∥∥∥2

X
+ ϕadd

(∥∥∥F′
[
u†
] (

u− u†
)∥∥∥2

L2(Ω,µ)

)
for all u ∈ X .

Moreover due to (4.10) we can bound the term
∥∥F′

[
u†] (u− u†)∥∥2

L2(Ω,µ) from above up to

some constant by KLe
(

g†; F
(
u†)+ F′

[
u†] (u− u†)), which is due to Assumption 6.1B

bounded by Ctc KLe
(

g†; F (u)
)
. Hence we find as in the proof of Corollary (4.7) that〈

u∗, u† − u
〉
≤ β

∥∥∥u− u†
∥∥∥2

X
+ cϕadd

(
S
(

F (u) ; g†
))

for all u ∈ B
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7.2: Convergence rates

for some constant c > 0, i.e. Assumption 3.15 is valid.

The Corollary above shows that our smoothness assumption (3.11) is implied by (3.9)
provided the nonlinearity condition (6.6b) holds true.

7.2 Convergence rates

This section provides the second main result of this thesis, namely convergence rates in
expectation for iteratively regularized Newton methods with full random data. The re-
sult splits into two parts, namely rates under an a priori stopping rule and an a posteriori
stopping rule. Due to the usage of the concentration inequality (4.1) the assumption e > 0
made at the beginning of this chapter is unavoidable.
The first step is to bound the error terms errn as in (6.11b) in probability. Remember that
errn was defined as the sum of two error terms err (g) with g being the first order Taylor
expansion of F around un evaluated at u† and un respectively where

err (g) =

∣∣∣∣∣∣
∫
Ω

ln (g + e)
(

1
t

dGt − g† dx
)∣∣∣∣∣∣

if g ≥ − e
2 a.e. To apply the concentration inequality we need hence to show that

ln
(

F (un) + F′ (un; v− un) + e
)
∈ Bs (R) for all n ∈N and v ∈

{
un+1, u†

}
with some constant R and moreover that F (un) + F′ (un; v− un) ≥ − e

2 a.e. for all n ∈N

and v ∈
{

un+1, u†}. Both things are done by an analog to Corollary 4.3:

COROLLARY 7.2:
Let Assumptions 2.7 and 6.1B hold true and assume moreover that F maps B into the Sobolev
space Hs (Ω) with s > d

2 such that

R := sup
u,v∈B

∥∥F (u) + F′ [u] (v− u)
∥∥

Hs(Ω)
< ∞. (7.1)

Then there exist Cconc, Cρ ≥ 1 depending only on Ω and s such that

P

(
sup

u,v∈B
err
(

F (u) + F′ (u; v− u)
)
≤ ρψ (t)

)

≥ 1− exp
(
− ρ

R max {e−s, ln (R)}Cconc

) (7.2)

for all t ≥ 1, ρ ≥ R max {e−s, ln (R)}Cρ.

PROOF:
From Assumption 2.7 we conclude that Se,t

(
F (u) ; g†) < ∞ for all u ∈ B. Hence, As-

sumption 6.1B implies Se,t
(

F (u) + F′ (u; v− u) ; g†) < ∞ for all u, v ∈ B and hence by
definition F (u) + F′ (u; v− u) ≥ − e

2 a.e. for all u, v ∈ B. Since s > d
2 we have moreover

F (u) + F′ (u; v− u) ≤ ‖E∞‖ R a.e. for all u, v ∈ B. Now the assertion is proven similarly
to Corollary 4.3.
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Chapter 7: Iteratively regularized Newton methods with Poisson data

THEOREM 7.3:
Let the Assumptions 2.7, 6.1B and 3.15 be satisfied and F : B → H2 (Ω) such that (7.1) is
fulfilled with s > d

2 . Moreover assume that η and KLe
(

g†; F (u0)
)

are sufficiently small. If we
choose the stopping index n∗ by

n∗ = min

{
n ∈N

∣∣∣∣∣ 1
αn
≥ − inf ∂ (−ϕ) (ψ (t))

}
(7.3)

we obtain the convergence rate

E
(
Du∗
R

(
un∗ , u†

))
= O (ϕ (ψ (t))) , t→ ∞. (7.4)

PROOF:
Under the posed conditions we find from Theorem 6.6 by plugging (6.20) and (6.21) to-
gether the estimate

(1− β)Du∗
R

(
un∗ , u†

)
≤ (1 + 2ηγnl)

(
2Ctc (−ϕadd)

∗
(
− 1

αn∗−1

)
+

err
αn∗−1

)
(7.5)

where err is due to the definition of errn in (6.11b) given by

err = 2 sup
u,v∈B

err
(

F (u) + F′ (u; v− u)
)

.

As in the proof of Theorem 4.11 we choose

ρk := R max
{

e−s, |ln (R)|
}

Cρk, k ∈N

where Cρ is the constant from Corollary 7.2 and define the events

Ek :=

{
sup

u,v∈B
err
(

F (u) + F′ (u; v− u)
)
≤ ρkψ (t)

}
, k ∈N.

From (7.2) it is known that

P (Ec
k) ≤ exp

(
−

Cρ

Cconc
k
)

.

Moreover, we find from (7.5) that

max
Ek
Du∗
R

(
un∗ , u†

)
≤ 2Ctc (1 + 2ηγnl)

1− β

(
(−ϕadd)

∗
(
− 1

αn∗−1

)
+

ρkψ (t)
αn∗−1

)
≤ 2Ctc (1 + 2ηγnl) ρk

1− β

(
(−ϕadd)

∗
(
− 1

αn∗−1

)
+

ψ (t)
αn∗−1

)
.

Now (6.25) implies for err replaced by ψ (t) that under the stopping rule (7.3) we have

max
Ek
Du∗
R

(
un∗ , u†

)
≤ C (k) ϕadd (ψ (t))

for all k ∈ N with C (k) = 2Ctc(1+2ηγnl)ρk
1−β . The sum ∑∞

k=2 exp
(
− Cρ

Cconc
(k− 1)

)
C (k) con-

verges since C (k) ∼ k as k → ∞. This allows us to apply Lemma 4.10 with Ξ (t) =

ϕadd (ψ (t)), c = Cρ

Cconc
and dn(t) = Du∗

R
(
un∗ , u†) which proves (7.4).
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7.2: Convergence rates

THEOREM 7.4:
Let the Assumptions 2.7, 6.1B and 3.15 be satisfied and F : B → H2 (Ω) such that (7.1) is
fulfilled with s > d

2 . Moreover assume that η and KLe
(

g†; F (u0)
)

are sufficiently small. If
β ∈

[
0, 1

2

]
, (3.44) is fulfilled and ϕadd is such that

ln (t) · ϕadd (ψ (t))↘ 0 as t→ ∞

we define

ρ (t) := −τ ln (ψ (t)) =
τ

2
ln (t) ,

Φdet
noi (n) := (4Cbd)

1
q

(
ρ (t)ψ (t)

αn

) 1
q

, (7.6a)

Nmax := min
{

n ∈N
∣∣ Φdet

noi (n) ≥ 1
}

, (7.6b)

nbal := min
{

n ∈ {1, . . . , Nmax}
∣∣ ∀m ≥ n ‖un − um‖ ≤ 4 (1 + γ̄nl)Φdet

noi (m)
}

(7.6c)

with a tuning parameter τ ≥ 1
2 R max {e−s, |ln (R)|}Cconc and γ̄nl as specified in (6.41) for

Cerr = 1. Then this a posteriori Lepskiı̆-type stopping rule implies for all sufficiently large t the
estimate

E
(∥∥∥unbal − u†

∥∥∥q

X

)
≤
(
C̄ρ (t) + diam (B)q) ϕ (ψ (t)) .

with a constant C̄ independent of t and hence

E
(∥∥∥unbal − u†

∥∥∥q

X

)
= O (ln (t) · ϕadd (ψ (t))) , t→ ∞. (7.7)

PROOF:
Lemma 6.18 implies under the given assumptions the error decomposition∥∥∥un − u†

∥∥∥
X
≤ Φnl (n) + Φapp (n) + Φnoi (n) (7.8)

where

Φnl (n) := (4ηCerrCbd)
1
q

(
sn

αn

) 1
q

,

Φapp (n) := (4CtcCerrCbd)
1
q (−ϕadd)

∗
(
− 1

αn

) 1
q

,

Φnoi (n) := (4Cbd)
1
q

 sup
u,v∈B

err (F (u) + F′ (u; v− u))

αn


1
q

and Φnl fulfills
Φnl (n) ≤ γ̄nl

(
Φnoi (n) + Φapp (n)

)
for all n ∈ N0. Let t be so large, that the assumptions from Corollary 7.2 hold true. Now
consider the event

Aρ =

{
sup

u,v∈B
err
(

F (u) + F′ (u; v− u)
)
≤ ρ (t)ψ (t)

}
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Chapter 7: Iteratively regularized Newton methods with Poisson data

which fulfills P
(

Aρ

)
≥ 1− exp (−cρ (t)) with c = 1

R max{e−s,|ln(R)|}Cconc
by (7.2). Then on

Aρ we may replace Φnoi in the error decomposition (7.8) by Φdet
noi from (7.6a). Now the

Lepskiı̆-type balancing principle (7.6) yields as in the proof Theorem 6.19 the estimate∥∥∥unbal − u†
∥∥∥

X
≤ 6 (1 + γ̄nl)C

1
q
dec min

n≤Nmax

(
Φapp (n) + Φdet

noi (n)
)

(7.9)

on Aρ with γ̄nl as in (6.41). It can be seen in the same way as in the proof of Theorem 4.12
that

E
(∥∥∥unbal − u†

∥∥∥q

X

∣∣∣∣ Aρ

)
≤ C̄ρ (t) ϕadd (ψ (t))

for all t sufficiently large with some constant C̄ independent of t. Hence

E
(∥∥∥unbal − u†

∥∥∥q

X

)
= P

(
Aρ

)
E
(∥∥∥unbal − u†

∥∥∥q

X

∣∣ Aρ

)
+ P

(
Ac

ρ

)
E
(∥∥∥unbal − u†

∥∥∥q

X

∣∣ Ac
ρ

)
≤ C̄ρ (t) ϕ (ψ (t)) + exp (−ρ (t))diam (B)q . (7.10)

Due to the definition of ρ (t) and the choice of τ we can for all sufficiently large t further-
more assume that

exp (−cρ (t)) = ψ (t)cτ ≤ Cϕadd (ψ (t)) .

for some constant C > 0 independent of t since ϕ2
add is concave and cτ ≥ 1

2 . Inserting this
into (7.10) yields the claim.

7.3 General convergence

To finish this chapter, we want to comment on the general convergence of (6.2) under
Poisson data and compare them with the results for Tikhonov-type regularization in Sec-
tion 4.3. As opposed to the result obtained there, we need to ensure that the nonlinearity
of F fits together with the data fidelity term S , which can no longer be guaranteed by the
variational inequality. So we need to suppose additionally that Assumption 6.1B holds
true. Assume again that X is a Hilbert space andR is given by the squared norm in X.

REMARK 7.5 (REGULARIZATION PROPERTIES):
Let F : X → Y be an operator fulfilling Assumptions 2.7 and 6.1B. As before (cf. Section
4.3) we find the existence of some index function ϕ such that (3.9) is fulfilled. The function
ϕ can be chosen such that ϕ2 is concave by possibly changing ω. As in the proof of
Corollary (7.1) we find that Assumption 3.15 is valid.
Thus for sufficiently small η and an initial guess which is close to u† we find for a proper
chosen stopping index n∗ convergence

∥∥un∗ − u†
∥∥

X
→ 0 as t → ∞ for the regularized

solutions un gained by (6.2) with Poisson data Gt as described in Chapter 2.

Moreover if the valid spectral source condition is strong enough (i.e. such that (4.15) is
fulfilled), then the a posteriori choice of nbal given by the Lepskiı̆-type balancing principle
(7.6c) yields convergence

∥∥unbal − u†
∥∥

X
→ 0 as t→ ∞.
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Chapter 8: Numerical examples

CHAPTER

EIGHT

NUMERICAL EXAMPLES

In this chapter we will apply the proposed iteratively regularized Newton method for
Poisson data to three problems from photonic imaging. Note that all examples from
Chapter 2 lead to a nonlinear forward operator F and hence the Tikhonov-type functional
in (3.2) is not convex. Thus, we do not use Tikhonov-type regularization. The implemen-
tation of the iteratively regularized Newton method in a continuous setup as well as the
first two examples of an inverse scattering problem without phase and a phase retrieval
problem in optics (cf. Sections 2.2.1 and 2.2.2) have already been described in [HW11].
For these two examples, we present detailed numeric simulations and tests to illustrate
the performance of our method. Finally we present a result for a third problem, namely
a semiblind deconvolution problem from 4Pi microscopy (cf. Section 2.2.3).

8.1 Implementation of the algorithm

For a numerical realization of our proposed method (6.2) with S = Se,t as defined in
(2.14) we need to solve a convex minimization problem in every Newton step, i.e. we
need to compute

un+1 = argmin
u∈B

∫
Ω

(
F (un) + F′ (un; u− un)

)
dx

−
∫
Ω

ln
(

F (un) + F′ (un; u− un) + e
) (1

t
dGt + e dx

)
+ αnR (u)


(8.1)

subject to F (un) + F′ (un; u− un) ≥ − e
2 . There are several algorithms for solving convex

minimization methods, e.g. primal-dual methods, sequential programming or the BFGS
method. Our implementation does not solve the exact problem (8.1), but a quadratic ap-
proximation of it, which reduces the computational effort. We expect even better results
if the problem (8.1) is solved exactly in each Newton step, which will be addressed in the
future.
To obtain a discrete approximation of (8.1), we subdivide Ω =

⋃d
j=1 Ωj into d disjoint

subdomains Ωj and generate a random data vector gobs ∈ [0, ∞)d with mutually inde-
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8.1: Implementation of the algorithm

pendent components such that

gobs
j
∼P

t
∫
Ωj

g† dx

 for all j = 1, ..., d.

Moreover define the mapping

F : X→ Rd, u 7→

∫
Ωj

F (u) dx


d

j=1

as a finite-dimensional approximation of F. Now (8.1) is approximated by the finite di-
mensional problem

un+1 = argmin
u∈Vk

[
d

∑
j=1

(
gn

j
+ (Tn (u− un))j

)

−
d

∑
j=1

ln
(

gn
j
+ (Tn (u− un))j + e

)(1
t

gobs
j

+ e
)
+ αnR (u)

] (8.2)

subject to gn
j
+ (Tn (u− un))j ≥ − e

2 for all j = 1, ..., d and u ∈ Pk (B) where Vk ⊂ X is a

k-dimensional subspace, gn = F (un), Tn = F′ [un] and Pk : X→ Vk denotes the projector.
In the following we will identify Vk with Rk.
Let us for a moment neglect both side conditions and assume that R is quadratic, e.g.
R (u) = ‖u− u0‖2

X for some Hilbert space X. We approximate the data fidelity term

Se,t

(
g + h; gobs

)
=

d

∑
j=1

(
g + h

)
j
−

d

∑
j=1

ln
(

g + h + e
)

j

(
1
t

gobs
j

+ e
)

by the second order Taylor expansion

S (2)e,t

[
g; gobs

]
(h) := Se,t

(
g; gobs

)
+

d

∑
j=1

1−
1
t gobs

j
+ e

g
j
+ e

 hj +
1
2

1
t gobs

j
+ e

(g
j
+ e)2 h2

j


and define an inner iteration

hn,l := argmin
h∈Rk

[
S (2)e

[
gn + Tn

(
un,l − un

)
; gobs

]
(Tnh) + αnR

(
un,l + h

)]
(8.3)

for l = 0, 1, ... with un,0 := un and un,l+1 := un,l + sn,lh
n,l . The step-length parameter

sn,l is introduced to ensure that gn + Tn
(
un,l+1 − un) ≥ −ηe in each step. This can be

guaranteed by

sn,l = max
{

s ∈ [0, 1]
∣∣ sTnhn,l ≥ −ηe− gn − Tn

(
un,l − un

)}
(8.4)

with some tuning parameter η ∈ [0, 1). In the computations we use η = 0.9, and the
choice η = 1/2 would ensure that un,l+1 satisfies the side condition in (2.14a). With these
settings, (8.3) can be seen as a reasonable approximation to (8.1).
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Chapter 8: Numerical examples

It follows from the first order optimality conditions, which are necessary and sufficient
due to strict convexity here, that un,l = un,l+1 is the exact solution un+1 of (8.2) if hn,l = 0.

Therefore, we stop the inner iteration if |h
n,l|
|hn,0| is sufficiently small. We also stop the inner

iteration if sn,l is 0 or too small.
Now note that gobs

j
+ e > 0 for all j = 1, ..., d and hence by omitting terms independent of

h and some simplifications we can write (8.3) as a least squares problem

hn,l = argmin
h∈Rk

[
d

∑
j=1

1
2


√

1
t gobs

j
+ e

gn,l
j

+ e
(Tnh)j +

gn,l
j
− 1

t gobs
j√

1
t gobs

j
+ e

2

+ αnR
(

un,l + h
) ]

(8.5)

with gn,l := gn + Tn
(
un,l − un). This quadratic problem can now be solved by the CG

method.

INPUT: ustart, (αn)n∈N , e > 0, η ∈ (0, 1) , F|Rk

n = 0;
un = ustart;
REPEAT

l = 0;
un,0 = un;
REPEAT

Calculate hn,l according to (8.5)
Calculate sn,l according to (8.4)
un,l+1 := un,l + sn,lh

n,l

l = l + 1;

UNTIL |h
n,l|
|hn,0| sufficiently small OR sn,l too small

un+1 = un,l ;
n = n + 1;

UNTIL STOP

OUTPUT: un

Figure 8.1: Our strategy for the implementation of (8.1).

In the examples below we observed fast convergence of the inner iteration (8.3). How-
ever, if the offset parameter e becomes too small or if e = 0 convergence deteriorates in
general. This is not surprising since the iteration (8.3) cannot be expected to converge to
the exact solution un+1 of (8.2) if the side condition gn + Tn

(
un+1 − un) ≥ −e/2 is active

at un+1.
To ensure that the data misfit term Se,t indeed approximates the negative log-likelihood
functional, we let moreover e ↘ 0 in our computations, i.e. the offset parameter en
is reduced by a fixed factor in every iteration step. Since a small parameter en causes
problems in the numerical realization of our algorithm, en should not tend to 0 to fast.
Note that our convergence analysis only includes the case that en ≡ e is fixed over the
whole reconstruction procedure (cf. Remark 4.4). Nevertheless, a convergence analysis
with en ↘ 0 is also possible by coupling the decay of en, αn and the noise level and
accepting worse convergence rates.
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8.2: An inverse obstacle scattering problem without phase

In the following we will compare our algorithm with the usual IRGNM (i.e. (5.3a) with
r = p = 2) and a weighted version for the examples described in Chapter 2. The
weighted version has already been proposed in [SBH11, Stü11] where the data fidelity
is chosen to be

Φ2
(

g; gobs
)

:=
∫
Ω

∣∣g− gobs
∣∣2

max {gobs, c}
dx, (8.6)

i.e. a weighted L2 norm. The weight approximates 1/g†, which turns out to realize the
second order Taylor approximation of g 7→ KL

(
g†; g

)
around g†. The parameter c > 0

is included to avoid divisions by 0. The fidelity term in (8.6) with c = 0 is also known
as Pearson’s distance. If Φ2 is used as data fidelity term, then in every Newton step a
weighted least-squares problem needs to be solved, which is done with the help of the
CG algorithm.
To compare our algorithm with the quadratic ones described above we perform 100 ex-
periments with simulated Poisson data and use an oracle stopping rule to eliminate the
influence of this choice. This is done by using

N := argmin
1≤n≤Nmax

E‖un − u†‖2
L2 (8.7)

as stopping index with the empirical version of the expectation. Moreover we compare
the choice (8.7) for our algorithm with the choice provided by the Lepskiı̆-type balancing
principle, i.e.

Φdet
noi (n) := c1

√
2

√
ln (t)ψ (t)

αn
,

Nmax := min
{

n ∈N
∣∣ Φdet

noi (n) ≥ 1
}

,

nbal := min
{

n ∈ {1, . . . , Nmax}
∣∣ ∀m ≥ n : ‖un − um‖L2 ≤ c2Φdet

noi (m)
}

with suitable constants c1, c2 > 0.

8.2 An inverse obstacle scattering problem without phase

In this section we want to apply our method to the case of an inverse obstacle scat-
tering problem without phase as presented in Chapter 2. As pointed out in Section
2.2.1 it is impossible to reconstruct the center of gravity of D since |u∞| is invariant
under translations. For plots we always shift the center of gravity of ∂D to the origin.
We assume that D is star-shaped and represent ∂D by a periodic function q such that
∂D = {q(t)(cos t, sin t)> : t ∈ [0, 2π]}. For details on the implementation of F, its deriva-
tive and adjoint we refer to [Hoh98] where the mapping q 7→ u∞ is considered as forward
operator.
It seems reasonable to consider F : q→ |u∞|2 as an operator

F : Hs
per ([0, 2π])→ L∞ ([0, 2π]) ,

but it can be seen easily that |u∞|2 is also an element of Lp ([0, 2π]) for any p in concur-
rence with Assumption 2.7(a). One could also choose any Sobolev space Hs

per ([0, 2π])

with arbitrary s as image space, since the function |u∞|2 is analytic. The set B ⊂ X =
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Chapter 8: Numerical examples

Hs
per ([0, 2π]) can be chosen arbitrary in this setup, for our numerical simulations we use

B = X even if this contradicts Assumption 2.7(b). For the Fréchet differentiability we
refer to [Hoh98]. Further note that Assumption 2.7(e) is fulfilled for free by the definition
of F.
As a test example we choose the peanut-shaped obstacle shown in Figure 2.2 described
by q†(t) = 1

2

√
3 cos2 t + 1 with two incident waves from ’South West’ and from ’East’

with wave number k = 10. The incident directions are marked by two arrows in Figure
8.3. The initial guess for the Newton iteration is the unit circle described by q0 ≡ 1,
and we choose the Sobolev norm R (q) = ‖q− q0‖2

Hs with s = 1.6 as penalty functional.
The regularization parameters are chosen as αn = 0.5 · (2/3)n. Moreover, we choose
an initial offset parameter e = 0.002, which is reduced by 4

5 in each iteration step. The
inner iteration (8.3) is stopped when ‖hn,l‖/‖hn,0‖ ≤ 0.1, which was usually the case after
about three iterations (or about five iterations for ‖hn,l‖/‖hn,0‖ ≤ 0.01).
To illustrate the decay of noise as t → ∞ we also calculated the error terms errn as in
(6.11b) for every iteration n. The result is shown in Figure 8.2 and one can see that the
decay is indeed of order O

(
1√

t

)
as theoretically ensured by Corollary 7.2.
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(e) histogram for t = 106

t E
(

max
n≤20

errn

)
factor

102 0.1383

103 0.0305
4.53

104 0.0096
3.18

105 0.0029
3.28

106 0.0008
3.70

(f) means for different t

Figure 8.2: Overview for the error terms (6.11b) for the scattering problem. For differ-
ent values of the expected total number of counts the value maxn≤20 errn has
been calculated in 100 experiments. Above the corresponding histograms
and means are shown. The decay of order 1√

t
, i.e. reduction by a factor of

√
10 ≈ 3.16 in the table is clearly visible. Moreover, since all values are fi-

nite we note that F (un) + F′
(
un, u† − un

)
≥ −e/2 holds always true (this has

theoretically been gained by the generalized tangential cone condition).
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8.2: An inverse obstacle scattering problem without phase

We gain convergence of Tikhonov-type regularization from Remark 4.15 if the tangential
cone condition (6.3) is fulfilled with small η̄. Moreover, a spectral source condition (3.9)
implies under (6.3) due to Corollary (4.7) an additive variational inequality (3.11) with
some index function ϕadd. Thus for a proper chosen regularization parameter α Theorem
4.11 yields convergence rates.
Supposed the nonlinearity condition (6.6b) holds true we gain convergence of (8.1) from
Remark 7.5 if u0 is sufficiently good. Moreover, a spectral source condition (3.9) implies
under (6.6b) due to Corollary (7.1) an additive variational inequality (3.11) with some in-
dex function ϕadd. Thus for a sufficiently good initial guess and a proper chosen stopping
index n∗ Theorem 7.3 yields convergence rates.
Since F maps arbitrarily rough functions to analytic functions, we expect only a weak
source condition (i.e. (3.9) with logarithmic ϕ) to hold. Therefore, we do not discuss the
implications under weaker nonlinearity conditions here.

t S(g; gobs) Stopping rule N
√

E‖qN−q†‖2
L2

√
V‖qN−q†‖L2

100

∥∥∥g− gobs
∥∥∥2

L2
Oracle 7 0.124 0.033

Φ2
(

g; gobs
)

Oracle 2 0.122 0.018

Se,t

(
g; gobs

)
Oracle 3 0.091 0.025

Se,t

(
g; gobs

)
Lepskiı̆ 4.4 ± 1.32 0.105 0.030

1000

∥∥∥g− gobs
∥∥∥2

L2
Oracle 9 0.106 0.014

Φ2
(

g; gobs
)

Oracle 7 0.091 0.012

Se,t

(
g; gobs

)
Oracle 5 0.070 0.017

Se,t

(
g; gobs

)
Lepskiı̆ 4.8 ± 0.95 0.078 0.019

10000

∥∥∥g− gobs
∥∥∥2

L2
Oracle 9 0.105 0.004

Φ2
(

g; gobs
)

Oracle 23 0.076 0.048

Se,t

(
g; gobs

)
Oracle 5 0.050 0.005

Se,t

(
g; gobs

)
Lepskiı̆ 5.6 ± 1.08 0.060 0.014

Table 8.1: L2-error statistics for the inverse obstacle scattering problem (2.16). We com-
pare the data fidelity choice Se,t with the standard L2 distance

∥∥g− gobs
∥∥2

L2 and
Pearson’s distance Φ2 given in (8.6) for different values of the expected total
number of counts t each with 100 experiments. The error of the initial guess is
‖q0−q†‖L2 = 0.288. All parameters as described in Section 8.2.

Error statistics of shape reconstructions from 100 experiments are shown in Table 8.1.
It turned out that for t = 100 and t = 1000 the parameter c in (8.6) should be chosen
small whereas for t = 10000 c should be much larger. We decided for c = 0.2 in all
cases to produce comparable examples. Note that the mean square error is significantly
smaller for the Kullback-Leibler divergence than for the L2-distances. For comparison of
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Chapter 8: Numerical examples

the oracle stopping rule (8.7) with the Lepskiı̆-type balancing principle we chose c1 = 0.1
and c2 = 0.2, which is necessary due to norm scaling in our algorithm. In Table 8.1 it can
be seen that the Lepskiı̆ principle yields reasonable results which are comparable to those
obtained by the oracle stopping rule.

−1 0 1

−1

0

1

(a) results for S = Se,t. blue: best, green:
median, black: initial guess

−1 0 1

−1

0

1

(b) results for S(g1; g2) = ‖g1 − g2‖2
L2 .

blue: best, green: median, black: initial
guess

Figure 8.3: Numerical results for the inverse obstacle scattering problem (2.16). Panels
(a) and (b) show best and median reconstruction from 100 experiments with
t = 1000 expected counts where the stopping parameter N is chosen by the
oracle rule (8.7). See also Table 8.1.

8.3 A phase retrieval problem

In this section we will consider a phase retrieval problem as described in Section 2.2.2.
In the following we assume more specifically that f : R2 → C is of the form f (x) =
exp (iϕ (x)) with an unknown real-valued function ϕ where the support supp (ϕ) is
known to be compact in Bρ =

{
x ∈ R2 : |x| ≤ ρ

}
. For a uniqueness result we refer

to KLIBANOV [Kli06], although not all assumptions of this theorem are satisfied in the
example below. It turns out to be particularly helpful if ϕ has a jump of known magni-
tude at the boundary of its support. We will assume for simplicity that supp (ϕ) = Bρ

and that ϕ ≈ χBρ close to the boundary ∂Bρ (here χBρ denotes the characteristic function
of Bρ). This leads as motivated in Section 2.2.2 to an inverse problem where the forward
operator is given by

F : Hs (Bρ

)
→ L∞

(
[−κ, κ]2

)
, (F (ϕ)) (ξ) :=

∣∣∣∣∣∣∣
∫
Bρ

exp (−iξ · x) exp (iϕ (x)) dx

∣∣∣∣∣∣∣
2

. (8.8)

The a priori information on ϕ can be incorporated in the form of an initial guess ϕ0 ≡
1. As for the scattering problem it follows from the fact that the range of F consists of
analytic functions that F maps also bounded into Lp

(
[−κ, κ]2

)
for any p in concurrence

with Assumption 2.7(a). Moreover, the choice of any Sobolev space Hs
(
[−κ, κ]2

)
with

arbitrary s as image space is possible. The set B ⊂ X = Hs (Bρ

)
can be chosen arbitrary
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8.3: A phase retrieval problem

since the support constraint is already included by considering only functions on Bρ in
the space X. For our numeric simulations we again dropped the constraint un ∈ B
which corresponds to the case B = X, even if this contradicts Assumption 2.7(b). This
is possible since Assumption 2.7(e) is again fulfilled for free by the definition of F. The
Fréchet differentiability of F is obvious and the derivative as well as its adjoint can be
calculated easily.
For our numeric calculations we choose the Sobolev index s = 1

2 and the regularization
parameters αn = 5

106 · (2/3)n. The offset parameter e is initially set to 2 · 10−6 and reduced
by a factor 4

5 in each iteration step. The corresponding data for different t can be seen in
Figure 8.4, which illustrates similarly to Figure 8.2 the decay of noise.

−8

−6

−4

−2

(a) log10 of exact data g†

−2

0

2

(b) log10 of Poisson data for t = 104

−2

0

2

4

(c) log10 of Poisson data for t = 105

−2

0

2

4

(d) log10 of Poisson data for t = 106

Figure 8.4: Exact and corresponding Poisson data for different observation times t for the
phase retrieval problem. Note that in comparison to Figure 1.1 the Poisson
data has not been normalized here.

The convergence results obtained by our theoretical results are similar as for the scatter-
ing problem, i.e. supposed the tangential cone condition (6.3) is fulfilled with small η̄
we gain convergence of Tikhonov-type regularization from Remark 4.15. If the spectral
source condition (3.9) can be specified, we gain the convergence rate (4.13) as t → ∞ for
a proper chosen regularization parameter α. Supposed the nonlinearity condition (6.6b)
holds true we gain convergence of (8.1) from Remark 7.5 if u0 is sufficiently good. More-
over, a spectral source condition (3.9) yields for a sufficiently good initial guess and a
proper chosen stopping index n∗ the convergence rate (7.4). Note that we would expect
only a weak source condition (i.e. (3.9) with logarithmic ϕ) to hold since the operator
maps arbitrarily rough functions (with compact support) to analytic functions. There-
fore, we do not discuss the implications under weaker nonlinearity conditions here.
In Table 8.2 the convergence of (8.5) is illustrated. As for the scattering problem we ob-
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t S
(

g; gobs
)

Stopping rule N
√

E‖ϕN−ϕ†‖2
L2

√
V‖ϕN−ϕ†‖L2

104

∥∥∥g− gobs
∥∥∥2

L2
Oracle 4 49.29 4.83

Φ2
(

g; gobs
)

Oracle 1 66.56 4.33

Se,t

(
g; gobs

)
Oracle 8 42.78 2.13

Se,t

(
g; gobs

)
Lepskiı̆ 3.9 ± 0.72 46.78 4.21

105

∥∥∥g− gobs
∥∥∥2

L2
Oracle 24 31.22 4.91

Φ2
(

g; gobs
)

Oracle 3 37.09 1.23

Se,t

(
g; gobs

)
Oracle 9 32.47 1.35

Se,t

(
g; gobs

)
Lepskiı̆ 9.1 ± 0.58 32.44 1.41

106

∥∥∥g− gobs
∥∥∥2

L2
Oracle 30 16.83 2.31

Φ2
(

g; gobs
)

Oracle 7 16.44 0.32

Se,t

(
g; gobs

)
Oracle 14 18.60 0.88

Se,t

(
g; gobs

)
Lepskiı̆ 13.8 ± 0.63 18.60 0.80

Table 8.2: L2-error statistics for the phase retrieval problem (8.8). We compare the data
fidelity choices Se,t with the standard L2 distance

∥∥g− gobs
∥∥2

L2 and Pearson’s
distance Φ2 given in (8.6) for different values of the expected total number of
counts t each with 100 experiments. The initial error is ‖ϕ0 − ϕ†‖L2 = 75.05.
All parameters as described in Section 8.3. Note that it is unclear how close the
reconstructions of our method for t = 106 are to those of (8.1), since for large t
the system (8.5) is highly ill-conditioned and could hence not be solved reliably
by the CG method!

served a quite inconsistent behavior for the choice of c in (8.6): For small t we require a
small cutoff c, but for t = 106 the results are better for c > 1, which is not a reasonable
choice. We decided again for c = 0.2 in all cases. It can be seen from Table 8.2 that espe-
cially for low count data the expected square error E‖ϕN−ϕ†‖2

L2 is significantly smaller.
For high count data the expected square error for both methods is comparable with a
slight advantage for the L2-distances. It must be said, however, that for high n (i.e. small
regularization parameters αn), which are necessary for high-count data, the system be-
comes so ill-conditioned that it can no longer be solved reliably by the CG method. For
such n the CG iteration is typically terminated at the maximum number of iterations (e.g.
50 or 200) before the stopping criterion guaranteeing an accurate solution of the regular-
ized Newton equations was met. Hence, it remains unclear at the moment how close
our results are to those of an accurate application of the respective methods and how
those would compare.
For comparison of the oracle stopping rule (8.7) with the Lepskiı̆-type balancing principle
we chose c1 = 0.1 and c2 = 20, which seems to be a reasonable choice. In Table 8.1 it can
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(d) median reconstruction for t = 105 of
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Figure 8.5: Median reconstructions for the phase retrieval problem with different obser-
vation times t in comparison to the exact solution. See also Table 8.2.
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Chapter 8: Numerical examples

be seen that the Lepskiı̆ principle yields similar results as the oracle stopping rule and
the convergence rates seem to coincide.
Comparing the subplots in Figure 8.5 the previously described behavior becomes visible.
For low count data our algorithm performs better and is able to reconstruct the shape of
the cells much more clearly. In the case of high count data (t = 106), both reconstructions
look similar.

8.4 A semiblind deconvolution problem

In this section we will consider the problem which arises from the application in 4Pi
microscopy as described in Section 2.2.3. As mentioned there, the forward operator has
the form

F4Pi ( f , φ) (x) =
∫
Ω

p (y− x, φ (x)) f (y) dy, y ∈ Ω.

Since the point spread function p depends on the (unknown) phase φ and is hence par-
tially unknown, this problem is called a semiblind deconvolution problem. For physical
reasons, the unknown phase φ can be assumed to be smooth. Hence it seems natural to
consider F4Pi as an operator

F4Pi : X := L2 (Ω)× H2 (Ω)→ L2 (Ω) .

Using the special structure (see [Stü11])

p (x, ϕ) = h (x) cosn
(

cx3 +
ϕ

2

)
(8.9)

allows us to write F4Pi as a sum of convolutions with smooth kernels, and hence the
functions in the image of F are also smooth. Thus F maps also bounded into Lp (Ω)
for any p in concurrence with Assumption 2.7(a) and into any Sobolev space Hs (Ω)
with arbitrary s. To ensure that Assumption 2.7(e) is fulfilled, we need to choose B ⊆{
( f , φ) ∈ X

∣∣ f ≥ 0 a.e.
}

. The boundedness of B is dropped in our numeric simulations,
but the side constraint f ≥ 0 is implemented with the help of the Semi Smooth Newton
Method and we refer again to [Stü11, Sec. 5.2] for details. The Fréchet differentiability of
F and explicit representations of F′ and its adjoint are investigated by STÜCK in [Stü11].

For a fast implementation of F4Pi using the special structure (8.9) we also refer to [Stü11].
The idea is to write F4Pi with the help of (8.9) as a sum of convolutions, which can be im-
plemented using the fast Fourier transform (FFT). Therefore, the unknown function f as
well as the different convolution kernels need to be approximated by periodic functions
which is done by zero padding to a larger domain and periodic extension. The corre-
sponding periodic function f is afterwards approximated by a trigonometric polynomial
of finite order. The smooth phase is represented by a polynomial of small degree. Both
together yield the k-dimensional approximation space Vk as described in Section 8.1. The
incorporation of the side condition f ≥ 0 a.e. with the help of the Semi Smooth Newton
Method corresponds again to an iterative method for calculating hn,l in (8.5) and causes
a high numerical effort. For our numeric tests we hence set the maximal number of inner
iterations to 1.
It has been shown in [SBH11] that the operator F fulfills a Lipschitz condition (6.5). More-
over, convergence rates for the iteratively regularized Gauss Newton method (5.3a) in the
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8.4: A semiblind deconvolution problem

quadratic Hilbert space case with the side constraint B =
{
( f , φ) ∈ X

∣∣ f ≥ 0 a.e.
}

un-
der the projected source condition (3.18) have been obtained. We want to mention here,
that also the case of operator noise has been included in this study.
Those results are reproduced by our theory. Since the projected source condition (3.18)
together with (6.5) and L

2 ‖ω‖ < 1 implies the additive variational inequality (3.11) with
ϕadd = ϕ 1

2
, our Theorem 6.8 applies and yields as in Remark 6.13 the convergence rate∥∥∥un∗ − u†

∥∥∥
X
= O

(√
δ
)

(8.10)

where u† =
(

f †, φ†) and un∗ = ( fn∗ , φn∗). Nevertheless, this rate holds true only if the
operator F is given exactly. Operator noise can be included since Assumption 3.8 is for-
mulated quite generally, but this is beyond the scope of this thesis.
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Figure 8.6: Exemplary reconstruction for the 4Pi problem. Panels (a) and (b) show exact
object and phase, (c) and (d) show the reconstructions.

The convergence results for using the negative log-likelihood functional obtained by our
theoretical results are similar as for other two problems, i.e. supposed the tangential
cone condition (6.3) is fulfilled with small η̄ we gain convergence of Tikhonov-type reg-
ularization from Remark 4.15. If the spectral source condition (3.9) can be specified, we
gain the convergence rate (4.13) as t→ ∞ for a proper chosen regularization parameter α.
Supposed the nonlinearity condition (6.6b) holds true we gain convergence of (8.1) from
Remark 7.5 if u0 is sufficiently good. Moreover, a spectral source condition (3.9) yields for
a sufficiently good initial guess and a proper chosen stopping index n∗ the convergence
rate (7.4).
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As for the other two aforementioned problems we would expect only a weak source
condition (i.e. (3.9) with logarithmic ϕ) to hold since the operator maps arbitrarily rough
functions to smooth functions. Nevertheless, for the comparability with [Stü11] we will
discuss the usage of the stronger source condition (3.18) in combination with a weaker
nonlinearity condition in the following.
If Assumption 6.2 is fulfilled with r = 2, then the result from Theorem 6.8 with p = 2 also
applies to the case of S being the Kullback-Leibler divergence. This can be seen by using
Corollary 4.8, which provides the variational inequality (3.11) with ϕadd = β′ϕ 1

2
under

(3.18). Thus, we are able to enhance the results from [Stü11] to the case of Poisson data
under a similar source condition.

Due to the fact that the computation time for a single example is still very high (espe-
cially for 3D data sets as they occur in practice) we performed no statistical tests as for
the first two examples. Numeric tests with a data-weighted L2-distance as fidelity term
has been presented in [Stü11,SBH11], and different algorithms for the reconstruction of f
have been considered and tested in [BCC06, VSE+10]. In Figure 8.6 an exemplary recon-
struction of our algorithm is shown. First comparisons with the algorithm from [Stü11]
have shown that both algorithms yield similar results, which might be caused by setting
the number of inner iterations to one.
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