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Introduction Motivation

Photonic imaging

• Photonic imaging consists in counting photons which have interacted
with some unknown object of interest.

• We want to reconstruct information on the unknown object ϕ†

contained in these photon counts.

• Formulation as an operator equation

F (ϕ) = g

where g describes the photon density on the manifold where
measurements are taken.

• For fundamental physical reasons, photon count data gobs are Poisson
distributed with mean g † (true photon density).
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Introduction Motivation

Examples

• Positron Emission Tomography (PET)

• astronomical imaging

• scanning fluorescence microscopy, e.g. standard confocal, 4Pi or
STED microscopy

• coherent x-ray imaging
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Introduction Regularization

Ill-Posedness

The forementioned problems are ill-posed in the sense that ϕ does not
depend continuously on F (ϕ). Hence, the problem cannot be solved
directly or by a usual Newton method but regularization is needed.

For nonlinear F one of the most popular methods is the iteratively
regularized Gauss-Newton method (IRGNM)

ϕj+1 = argmin
ϕ∈B

(∥∥∥F ′ (ϕj ;ϕ− ϕj) + F (ϕj)− gobs
∥∥∥2

L2
+ αj ‖ϕ− ϕ0‖2

L2

)
with some initial guess ϕ0 ∈ B.

The regularization parameters αj control the stability and fulfill

α0 ≤ 1, αj ↘ 0, 1 ≤
αj

αj+1
≤ Cdec for all j ∈ N.
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Introduction Regularization

Noise adjusted regularization
The IRGNM corresponds to a Gaussian noise structure. Hence,

• the information about the noise structure is ignored and

• especially for low intensity we get bad reconstructions.

Our idea is to use another data misfit functional S which incorporates the
special structure of the noise and take

ϕn+1 = argmin
ϕ∈B

S
(
F (ϕj) + F ′ (ϕj ;ϕ− ϕj) ; gobs

)
+ αjR (ϕ)

where S
(
·; gobs

)
is some convex data misfit functional and R some

convex penalty term. For Poisson data the first choice would be the

negative log-likelihood

S
(
g ; gobs

)
=

∫
Ω

g − gobs ln (g) dx .
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Introduction Regularization

Alternatives
An alternative approach is nonlinear Tikhonov regularization

ϕα = argmin
ϕ∈B

S
(
F (ϕ) ; gobs

)
+ αR (ϕ)

which has been considered by several authors:

J. M. Bardsley.
A theoretical framework for the regularization of Poisson likelihood estimation problems.
Inverse Problems and Imaging, 4:11–17, 2010.

M. Benning and M. Burger.
Error estimates for general fidelities.
Electronic Transactions on Numerical Analysis, 38:44–68, 2011.

J. Flemming.
Theory and examples of variational regularisation with non-metric fitting functionals.
Journal of Inverse and Ill-Posed Problems, 18(6):677–699, 2010.

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen.
Variational Methods in Imaging.
Applied Mathematical Sciences. Springer, 2008.
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An iteratively regularized Newton method Assumptions

Source condition I

The usual Hilbert space source condition

ϕ† − ϕ0 = Λ
(
F ′
[
ϕ†
]∗

F ′
[
ϕ†
])
ω

implies by spectral theory and Jensen’s inequality

∣∣∣〈ϕ†∗, ϕ− ϕ†〉∣∣∣ ≤ ‖ω‖ ∥∥∥ϕ− ϕ†∥∥∥Λ

(∥∥F ′ [ϕ†] (ϕ− ϕ†)∥∥2

‖ϕ− ϕ†‖2

)
.

This is the prototype of a variational source condition.

B. Kaltenbacher and B. Hofmann.
Convergence Rates for the Iteratively Regularized Gauss-Newton Method in Banach
Spaces.
Inverse Problems, 26(3):035007, 2010.
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An iteratively regularized Newton method Assumptions

Source condition II

We will assume the following generalization:

Multiplicative variational source condition

There exists ϕ†∗ ∈ ∂R
(
ϕ†
)
⊂ X ′, β ≥ 0 and a concave index function

Λ : (0,∞)→ (0,∞) (i.e. continuous, monotonically increasing and
Λ(0) = 0) such that

〈
ϕ†∗, ϕ

† − ϕ
〉
≤ β∆

(
ϕ,ϕ†

) 1
2

Λ

(
S
(
F (ϕ) ; g †

)
∆ (ϕ,ϕ†)

)
for all ϕ ∈ B.

Moreover, we assume that t 7→ Λ(t)√
t

is monotonically decreasing.

∆
(
ϕ,ϕ†

)
:= R (ϕ)−R

(
ϕ†
)
−
〈
ϕ†∗, ϕ− ϕ†

〉
is the Bregman distance.
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An iteratively regularized Newton method Assumptions

Noise I

In case of S being the r -th power of a norm one usually assumes∥∥gobs − g †
∥∥ ≤ δ which by the triangle inequality leads to

21−r
∥∥∥g − g †

∥∥∥r − δr ≤ ∥∥∥g − gobs
∥∥∥r ≤ 2r−1

∥∥∥g − g †
∥∥∥r + 2r−1δr

for all g ∈ Y.

In case of Poisson noise and the negative log-likelihood as data misfit, we
obtain the following difficulties:

• The data misfit functional does not fulfill a triangle inequality.

• S
(
g ; gobs

)
might be ∞ even if S

(
g ; g †

)
is finite and vice versa.
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An iteratively regularized Newton method Assumptions

Noise II

In case of S being the r -th power of a norm one usually assumes∥∥gobs − g †
∥∥ ≤ δ which by the triangle inequality leads to

21−r
∥∥∥g − g †

∥∥∥r − δr ≤ ∥∥∥g − gobs
∥∥∥r ≤ 2r−1

∥∥∥g − g †
∥∥∥r + 2r−1δr

for all g ∈ Y.

Generalization:

Noise level

There exists some Cerr ≥ 1 and a functional err : Y → [0,∞] such that

1

Cerr
S
(
g ; g†)− err (g) ≤ S

(
g ; gobs

)
≤ CerrS

(
g ; g†)+ Cerrerr (g)

for all g ∈ Y.
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An iteratively regularized Newton method Assumptions

Nonlinearity estimate

Generalized tangential cone condition

There exist constants η (later assumed to be sufficiently small) and
Ctc ≥ 1 such that

1

Ctc
S
(
F (ψ) ; g †

)
− ηS

(
F (ϕ) ; g †

)
≤S

(
F (ϕ) + F ′ (ϕ;ψ − ϕ) ; g †

)
≤CtcS

(
F (ψ) ; g †

)
+ ηS

(
F (ϕ) ; g †

)
for all ϕ,ψ ∈ B.

For S (g ; ĝ) = ‖g − ĝ‖r this follows from the standard tangential cone
condition ∥∥F (ϕ)− F (ψ)− F ′ (ϕ;ψ − ϕ)

∥∥ ≤ η̄ ‖F (ϕ)− F (ψ)‖ .
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An iteratively regularized Newton method Assumptions

Rate function and stopping rule

Our convergence rates result uses the following rate function:

Θ (t) := tΛ2 (t) .

Θ and Θ−1 are index functions.

Moreover define

errj := err (F (ϕj) + F ′ (ϕj ;ϕj+1 − ϕj))

+Cerr err
(
F (ϕj) + F ′

(
ϕj ;ϕ

† − ϕj

))
and use the following stopping index:

Stopping rule

We define
j∗ (errj) := min

{
j ∈ N

∣∣ Θ (αj) ≤ τ errj
}

with some tuning parameter τ ≥ 1.
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An iteratively regularized Newton method Convergence rates results

Rates of convergence

Convergence theorem

Let the Assumptions from above hold and let η, ∆
(
ϕ0, ϕ

†) and
S
(
F (ϕ0) ; g †

)
sufficiently small. Then the iterates (ϕj) for exact data

gobs = g † fulfill

∆
(
ϕj , ϕ

†
)

= O
(
Λ2 (αj)

)
,

S
(
F (ϕj) ; g †

)
= O (Θ (αj))

as j →∞, and in case of noisy data for sufficiently large τ ≥ 1 we get

∆
(
ϕj∗ , ϕ

†
)

= O
(
Λ2
(
Θ−1 (errj∗)

))
= O

(
errj∗

Θ−1 (errj∗)

)
,

S
(
F (ϕj∗) ; g †

)
= O (errj∗) .
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An iteratively regularized Newton method Convergence rates results

Extensions

• Same convergence rates in terms of

errj :=
1

Cerr
err (F (ϕj+1)) + 2ηCtc err (F (ϕj)) + CtcCerr err

(
g †
)
.

if the nonlinearity condition also holds for noisy data gobs.

• Error decomposition and Lepskĭı-type parameter choice rule in the
case of an additive variational inequality〈

ϕ†∗, ϕ
† − ϕ

〉
≤ β1∆

(
ϕ,ϕ†

)
+ β2Λ

(
S
(
F (ϕ) ; g †

))
.

B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer.
A convergence rates result for Tikhonov regularization in Banach spaces with
non-smooth operators.
Inverse Problems, 23(3):987–1010, 2007.

• Convergence rates under Hölder-type variational inequalities with
index ν ∈

[
1
2 , 1
)

in combination with a Lipschitz assumption.
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• Convergence rates under Hölder-type variational inequalities with
index ν ∈

[
1
2 , 1
)

in combination with a Lipschitz assumption.

Frank Werner, Göttingen Iteratively regularized Newton methods May 25, 2011 17 / 29



An iteratively regularized Newton method Convergence rates results

Extensions

• Same convergence rates in terms of

errj :=
1

Cerr
err (F (ϕj+1)) + 2ηCtc err (F (ϕj)) + CtcCerr err

(
g †
)
.

if the nonlinearity condition also holds for noisy data gobs.
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Important special case: Poisson data Deterministic Poisson model

Poisson data

Let Y = L1(Ω, ν) ∩ L∞(Ω, ν) for some measure space (Ω, ν), and

F (ϕ) ≥ 0 ν − a.e. for all ϕ ∈ B.

Moreover we assume that our noisy data gobs fulfills gobs ≥ 0, gobs = 0
where g † = 0 and ∫

{g†>0}

|gobs − g †|2

g †
dν ≤ 1

t

for some t > 0.

• This is motivated by the fact that for a Poisson process the variance
decays like 1√

t
where t is proportional to the expected number of

photons.

• t can be interpreted as an illumination time and we want to study the
limit t →∞.
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Important special case: Poisson data Deterministic Poisson model

Bounding err

The Kullback-Leibler divergence has a singularity at 0, so we define an
offset version with e > 0 by

Se
(
g ; gobs

)
=

∫
Ω

g −
(
gobs + e

)
ln

(
g + e

e

)
dx

for g ≥ − e
2 . The deterministic noise model implies

∣∣∣Se(g ; gobs)− Se(g ; g †)
∣∣∣ ≤√C

t

for some constant C > 0 if − e
2 ≤ g ≤ B. Hence the inequalities for

err (F (ϕ) + F (ϕ;ψ − ϕ)) , ϕ, ψ ∈ B are fulfilled with

Cerr = 1 and err ≡
√

C
t .
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Important special case: Poisson data Convergence rates result

Convergence theorem

Convergence rates

Let the Assumptions from above hold and assume that the nonlinearity
condition is true for exact data. Moreover let

sup
ϕ,ψ∈B

∥∥F (ϕ) + F ′ (ϕ;ψ − ϕ)
∥∥
L∞

<∞.

Then the a-priori stopping rule j∗ := min
{
j ∈ N

∣∣ Θ (αj) ≤ τ√
t

}
with a

sufficiently large parameter τ > 0 leads to the convergence rates

∆
(
ϕj∗ , ϕ

†
)

= O
(

Λ2
(

Θ−1
(
t−1/2

)))
,

KLe

(
F (ϕj∗) ; g †

)
= O

(
t−1/2

)
.
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Important special case: Poisson data Convergence rates result

Extensions

• If the nonlinearity condition also holds for noisy data gobs, then the
offset e can be set to 0 under a suitable variance condition on F .
⇒ similar rates.

• Similar rates for a Lepskĭı-type parameter choice rule in case of an
additive variational inequality.

• Ongoing work on convergence rates in case of full stochastic data, i.e.
the data are given by a Poisson process.
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Application to a phase retrieval problem

The setting

F : Hs(Bρ) −→ L∞([−κ, κ]2),

F (ϕ) (ξ) =

∣∣∣∣∣
∫
Bρ

e−iξ·x ′e iϕ(x ′) dx ′

∣∣∣∣∣
2

M. V. Klibanov.
On the recovery of a 2-D function from the modulus of its Fourier transform.
J. Math. Anal. Appl., 323(2):818–843, 2006.
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Application to a phase retrieval problem

Median results for t = 104 expected counts
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K. Giewekemeyer et al, Phys. Rev. A, 83:023804, 2011.
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Application to a phase retrieval problem

Median results for t = 106 expected counts
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Conclusion

Shown results / Outlook

• Convergence analysis for iteratively regularized Newton methods with
arbitrary data misfit functional and arbitrary penalty term.

• Our results include the known results for the IRGNM.

• Applications to Poisson data via choosing S to be the negative
log-likelihood.

• Good numerical results in case of Poisson data.

T. Hohage and F. Werner.
Iteratively regularized Newton methods for general data misfit functionals and applications
to Poisson data.
http: // arxiv. org/ abs/ 1105. 2690v1 , 2011.
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