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Introduction

Setting and goal

• X and Y Hilbert spaces

• {ϕi}i∈N ⊂ X a dictionary

• T : X → Y bounded and linear

Can we identify the active components (=̂’support’) of an unknown f
from noisy measurements of Tf ?

More precisely:

Given noisy measurements Y ≈ Tf we want to generate a set Ia such that
at a controlled error level all i ∈ Ia satisfy 〈ϕi , f 〉X > 0
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Introduction

Support inference?

Special situation: Suppose that

• X is a space of functions (i.e. X = L2 (Ω)),

• and the functions ϕi have compact support (e.g. wavelet dictionary)

Then:
〈ϕi , f 〉X > 0 ⇒ f|supp(ϕi )

6≡ 0

Consequently, we obtain information about the support of f !
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Introduction

Related problems and methods
Suppose f is sparse w.r.t. {ϕi}i∈N. Then for the recovery of f many
methods are used:

• `1-penalized Tikhonov regularization / LASSO

f̂α = argmin
f ∈X

[
‖Tf − Y ‖2

Y + α

∞∑
i=1

|〈ϕi , f 〉X |

]

• Residual method / Danzig selector

f̂α = argmin
f ∈X

∞∑
i=1

|〈ϕi , f 〉X | subject to ‖Tf − Y ‖Y ≤ ρ

• Orthorgonal matching pursuit

• ...

But none of these methods can identify the true support at a controlled
error level!
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Introduction

Methodology

Inference for a single i :

• compute a function Φi such that 〈Φi ,Tf 〉Y = 〈ϕi , f 〉X , i.e.
ϕi = T ∗Φi

• compute the (asymptotic) distribution of 〈Φi ,Y 〉Y (test statistic)
under the hypothesis 〈ϕi , f 〉X = 0

• with the (1− α)-quantile q1−α of this (asymptotic) distribution it
holds under 〈ϕi , f 〉X = 0 (asymptotically)

P
[
〈Φi ,Y 〉Y ≥ q1−α

]
≤ α

• consequently if 〈Φi ,Y 〉Y ≥ q1−α we have 〈ϕi , f 〉X > 0 with
probability ≥ 1− α.
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Introduction

Methodology (cont’)
Inference for a all i :

• if we infer for each i individually, the multiplicity adjustment makes
the statements weak (if the statements are true for each single i with
probability 90%, then they hold true for two i at the same time only
with probability 81% etc.)

 remedy: simultaneous testing

• consider the test statistic

M = max
i

wi

 〈Φi ,Y 〉Y√
V
[
〈Φi ,Y 〉Y

] − wi

 .
• compute the asymptotic distribution of M under f ≡ 0 and its

(1− α)-quantile q1−α

• mark each i for which 〈Φi ,Y 〉Y > (q1−α/wi + wi )
√
V
[
〈Φi ,Y 〉Y

]
as

active
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Introduction

Methodology (cont’)

• by taking the max in the statistic the statements become uniform in i :

Ia :=

{
i
∣∣∣ 〈Φi ,Y 〉Y >

(
q1−α
wi

+ wi

)√
V
[
〈Φi ,Y 〉Y

]}
satisfies (asymptotically)

P [〈ϕi , f 〉X > 0 for all i ∈ Ia] ≥ 1− α.

 we can infer on all i at a controlled level!

Are the quantiles q1−α well-defined? How to compute them?

Frank Werner, MPIbpC Göttingen Support Inference September 23, 2016 9 / 30



Theory

Outline

1 Introduction

2 Theory

3 Simulations and real data example

4 Conclusion

Frank Werner, MPIbpC Göttingen Support Inference September 23, 2016 10 / 30



Theory

Specific setting

• Y = L2([0, 1]d), discrete measurements: Yj = (Tf ) (xj) + ξj ,

j ∈ {1, ..., n}d

• ξj are independent, centered (E [ξj ] = 0) and satisfy a moment
condition (especially all moments need to exist)

• the dictionary has at most N = N(n) elements ϕi which satisfy
ϕi = T ∗Φi , and there is a transformed mother wavelet Φ such that

{Φi} =

{
Φ

(
· − ti
hi

) ∣∣ 1 ≤ i ≤ N (n)

}
with scales hi ∈ [0, 1]d and positions ti ∈ [0, 1]d

• the function Φ has compact support in [0, 1]d
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Theory

Test statistic
• 〈Φi ,Y 〉Y is not available, approximate it by

〈Φi ,Y 〉n := n−d
∑

j∈{1,...,n}d
YjΦi (xj)

• the variance σ2
i := V

[
〈Φi ,Y 〉Y

]
might also be unknown, consider a

family of uniformly consistent estimators σ̂2
i

• we have to investigate the asymptotic distribution of

S (Y ) := max
i

[
wi

(
〈Φi ,Y 〉n

σ̂i
− wi

)]
• the calibration values are only scale-dependent and chosen as

wi =

√
2 log

(
CΦi∏
hi

)
+ Cd

log

(√
2 log

(
CΦi∏
hi

))
√

2 log
(

CΦi∏
hi

)
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Theory

Gaussian Approximation

Suppose that

• there are only polynomially many probe functions in the dictionary
(N(n) 6 nκ for some κ > 0)

• the smallest scale tends to zero not too fast
(mini minentries hi > log(n)p/n with some specific p)

• the largest scale tends to zero sufficiently fast
(maxi maxentries hi 6 n−δ for some δ > 0)

Gaussian Approximation

Then there are i.i.d. standard normal random variables ζj such that under
f ≡ 0 it holds

lim
n→∞

|P [S (Y ) > q]− P [S (ζ) > q]| = 0 for all q
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Theory

Gaussian Approximation (cont’)

Continuous Gaussian Approximation

There exists a Brownian sheet W such that S (Y ) can be approximated

S (W ) := max
i

[
wi

(∫
Φi (x) dWx

‖Φi‖L2

− wi

)]
,

i.e. under f ≡ 0 it holds

lim
n→∞

|P [S (Y ) > q]− P [S (W ) > q]| = 0 for all q.

Moreover

• S (W ) is a.s. bounded from below and above,

• S (W ) is asymptotically non-degenerate, i.e. does not concentrate to
any point,

• S (W ) does not depend on any unknown quantities.
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Theory

Gaussian Approximation - Implications

This means that we can use quantiles q1−α from

S (ζ) = max
i

[
wi

(
〈Φi , ζ〉n
‖Φi‖2

− wi

)]
to hold the asymptotic level.

• S (ζ) is ’distribution free’, i.e. it depends only on known quantities

 quantiles can be simulated easily

• quantiles are meaningful as n→∞

If 〈Φi ,Y 〉n >
(
q1−α
wi

+ wi

)
σ̂i mark i as active (i.e. i ∈ Ia)!
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Theory

Detection properties

So far: whenever i ∈ Ia, then asymptotically P [〈ϕi , f 〉X > 0] ≥ 1− α.

But how large must 〈ϕi , f 〉X be to be detected?

Lower detection bound

If 〈ϕi , f 〉X ≥ 2
(
q1−α
wi

+ wi

)
σi , then

lim
n→∞

P [i ∈ Ia] ≥ 1− α

uniformly in i .

Frank Werner, MPIbpC Göttingen Support Inference September 23, 2016 16 / 30



Theory

Special case: deconvolution

• Suppose d = 2 and T is a convolution operator, i.e.

(Tf ) (y) = (k ∗ f ) (y) :=

∫
[0,1]2

k (x − y) f (y) dy .

 This implies that if we choose {ϕi} of Wavelet-type we obtain

{Φi} =

{
Φ̃hi

(
· − ti
hi

) ∣∣ 1 ≤ i ≤ N (n)

}
where Φ̃h depends on h.

• Suppose the Fourier transform of the kernel k has a polynomial decay,
i.e.

c
(
1 + ‖ξ‖2

2

)−a ≤ |Fk(ξ)| ≤ C
(
1 + ‖ξ‖2

2

)−a
.

 This implies that the functions ϕi can be chosen such that they are
non-negative and have compact support, and ‖Φ̃h‖L2 behaves like
maxentries h

2a.
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Theory

Special case: deconvolution (cont’)

• S (Y ) can be approximated by a Gaussian version which is a.s.
bounded and non-degenerate

 whenever i ∈ Ia, then asymptotically P [〈ϕi , f 〉X > 0] ≥ 1− α.

• If 〈ϕi , f 〉X is sufficiently large, then i will be detected with probability
≥ 1− α.

Optimality of the lower detection bound

In d = 1 this lower detection bound is optimal in the sense that no
estimator for a β-Hölder-continuous function f can distinguish between
f|[t,t+h]

= 0 and f|[t,t+h]
≥ hβ at a faster rate in h = h(n).
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Simulations and real data example Simulations

Considered problem

• T deconvolution problem, i.e.

Yj = (k ∗ f ) (xj) + ξj , j ∈ {1, ..., n}2

with an equidistant grid {xj} on [0, 1]2.

• The kernel k is chosen from the family

(Fka,b) (ξ) = (1 + b2 ‖ξ‖2
2)−a, ξ ∈ R2.

• The variance is considered to be known.

• The mother wavelet ϕ is chosen to
minimize the variance ‖Φ‖2

L2

( Tensor product of Beta-Kernels)

0

1

Testfunction f
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Simulations and real data example Simulations

Some empirical levels for α = 0.1

Noise scenario Parameters false positives %

Gaussian noise 8.8

Student’s t noise

ν = 3 100
ν = 6 94.7
ν = 7 72.3
ν = 11 21.8
ν = 15 15.7
ν = 19 13.0
ν = 23 13.3

CCD noise (Sneyder ’93, ’95):
obs. time t, background b,
read-out errors N

(
0, σ2

) t = 100, b = 0.5, σ = 0.01 9.8
t = 1000, b = 0.005, σ = 0.01 8.1
t = 100, b = 0.005, σ = 0.01 14.5
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Simulations and real data example Simulations

Support recovery - result
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Simulations and real data example Simulations

Support recovery - result
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Simulations and real data example Simulations

Support recovery - result
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Simulations and real data example Real data example

Real data example - Setup

• we analyze fluorescent dyes
on single DNA Origami

• imaging is performed by a
STED microscope

• each of the two strands can
at most hold 12 markers

Observations (photon counts)
500nm

0

50

100
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Simulations and real data example Real data example

Modeling
The observations can perfectly modeled by

Yj
independent∼ Bin (t, (k ∗ f ) (xj)) , j ∈ {1, ..., n}2 .

• Bin (t, p): Binomial distribution with parameters t ∈ N and p ∈ [0, 1]
• f (x): probability that a photon emitted at grid point x is recorded at

the detector in a single excitation pulse

100nm

0

2 · 10−3

4 · 10−3

6 · 10−3
100nm

0

2 · 10−3

4 · 10−3

6 · 10−3

experimental kernel k2,0.016
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Simulations and real data example Real data example

Result
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Simulations and real data example Real data example

Comparison of the result with the data

(1)

(2)
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Conclusion

Outlook

• Methodology and theory:
• inference on active coefficients 〈ϕi , f 〉X w.r.t. a dictionary {ϕi}

• techniques from multiscale testing yield uniform inference at a
controlled (asymptotic) error level

• detection power is optimal in a suitable sense

• Application:
• the method can be used to determine the support of a function

observed in a convolution model

• performs well in a real data example

Thank you for your attention!
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