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Abstract. This paper provides a theoretical and numerical investigation of a penalty
decomposition scheme for the solution of optimization problems with geometric constraints.
In particular, we consider some situations where parts of the constraints are nonconvex and
complicated, like cardinality constraints, disjunctive programs, or matrix problems involv-
ing rank constraints. By a variable duplication and decomposition strategy, the method
presented here explicitly handles these difficult constraints, thus generating iterates which
are feasible with respect to them, while the remaining (standard and supposingly simple)
constraints are tackled by sequential penalization. Inexact optimization steps are proven
sufficient for the resulting algorithm to work, so that it is employable even with difficult
objective functions. The current work is therefore a significant generalization of existing
papers on penalty decomposition methods. On the other hand, it is related to some recent
publications which use an augmented Lagrangian idea to solve optimization problems with
geometric constraints. Compared to these methods, the decomposition idea is shown to be
numerically superior since it allows much more freedom in the choice of the subproblem
solver, and since the number of certain (possibly expensive) projection steps is significantly
less. Extensive numerical results on several highly complicated classes of optimization prob-
lems in vector and matrix spaces indicate that the current method is indeed very efficient
to solve these problems.
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1 Introduction
We consider the program

min
x

f(x) s.t. G(x) ∈ C, x ∈ D, (1.1)

where f : X → R and G : X → Y are continuously differentiable mappings, X and
Y are Euclidean spaces, i.e., real and finite-dimensional Hilbert spaces, C ⊆ Y is
nonempty, closed, and convex, whereas D ⊆ X is only assumed to be nonempty and
closed (not necessarily convex), representing a possibly complicated set.

This very general setting (analyzed for example in [25]) covers, for example, stan-
dard nonlinear programming problems with convex constraints, but also difficult dis-
junctive programming problems [8,9,18,36], e.g., complementarity [42], vanishing [1],
switching [37] and cardinality constrained [30, 31] problems. Matrix optimization
problems such as low-rank approximation [28,34] are also captured by our setting.

Problems with this structure, where the feasible set consists of the intersection of
a set of constraints expressed in analytical form and another complicated set, with-
out regularity guarantees but manageable for example by easy projections, have been
deeply studied in recent years. In particular, approaches based on decomposition and
sequential penalty or augmented Lagrangian methods have been proposed for the
convex case [19], the cardinality constrained case [31, 33] and the low-rank approxi-
mation case [43]; the recurrent idea in all these works consists of the application of
the variable splitting technique [21, 26], to then define a penalty function associated
with the differentiable constraints and the additional equality constraint linking the
two blocks of variables and finally solve the problem by a sequential penalty method.
The optimization of the penalty function is carried out by a two-block alternatimg
minimization scheme [20], which can be run in an exact [33, 43] or inexact [19, 31]
fashion.

The aim of this work is to extend the inexact Penalty Decomposition approach
to the general setting (1.1) in such a way that it can deal with arbitrary abstract
constraints D (at least theoretically, in practice D needs to be such that projections
onto this set are easy to compute) and that it allows additional (seemingly simple)
constraints given by G(x) ∈ C. This setting is related to some recent work on
(safeguarded) augmented Lagrangian methods, see, in particular, [25], where the
resulting subprobems are solved by a projected gradient-type method, which might
be inefficient especially for ill-conditioned problems. The decomposition idea used
here allows a much wider choice of subproblem solvers, usually resulting in a more
efficient solver of the given optimization problem (1.1).

The paper is organized as follows: Section 2 summarizes some preliminary con-
cepts and results. In particular, we recall the definitions of an M-stationary point (the
counterpart of a KKT point for the general setting from (1.1)), of an AM-stationary
point (as a sequential version of M-stationarity) and of an AM-regular point (this
being a suitable and relatively weak constraint qualification). Section 3 then presents
the Penalty Decomposition method together with a global convergence theory, assum-
ing that the resulting subproblems can be solved inexactly up to a certain degree. In
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Section 4, we then present a class of inexact alternating minimization methods which,
under certain assumptions, are guaranteed to find the desired approximate solution
of the subproblems arising in the outer penalty scheme. The remaining part of the
paper is then devoted to the implementation of the overall method and corresponding
numerical results. To this end, Section 5 first discusses several instances of the general
setting (1.1) with difficult constraints D where our method can be applied to quite
efficiently since projections onto D are simple and/or known analytically (though the
latter does not necessarily imply that these projections are easy to compute numer-
ically). In Section 6, we then present the results of an extensive numerical testing,
where we also compare our method, using different realizations, with the augemented
Lagrangian method from [25]. We conclude with some final remarks in Section 7.

2 Preliminaries
The Euclidean projection PC : Y → Y onto the nonempty, closed, and convex set C
is defined by

PC(y) := argminz∈C∥z − y∥.

The corresponding distance function dC : Y→ R can then be written as

distC(y) := min
z∈C
∥z − y∥ = ∥PC(y)− y∥.

Note that the distance function is nonsmooth (in general), but the squared distance
function

sC(y) :=
1

2
dist2C(y)

is continuously differentiable everywhere with derivative given by

∇sC(y) = y − PC(y), (2.1)

see [5, Cor. 12.30]. Moreover, projections onto the nonempty and closed set D also
exist, but are not necessarily unique. Therefore, we define the (usually set-valued)
projection operator ΠD : X ⇒ X by

ΠD(x) := argmin
z∈D

∥z − x∥ ≠ ∅.

The corresponding distance function distD(·) is, of course, single-valued again. Fur-
thermore, given a set-valued mapping S : X ⇒ X on an arbitrary Euclidean space X,
we define the outer limit of S at a point x̄ by

lim sup
x→x̄

S(x) :=
{
y ∈ X

∣∣∃xk → x̄,∃yk → y with yk ∈ S(xk) ∀k ∈ N
}
.

This allows to define the limiting normal cone at a point x ∈ D by

N lim
D (x) := lim sup

v→x

(
cone

(
v − ΠD(v)

))
,
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see [38, Sect. 1.1] for further details. Writing

x→D x̄ ⇐⇒ x→ x̄, x ∈ D

for sequences converging to an element x̄ ∈ D such that the whole sequence belongs
to D, the limiting normal cone has the important robustness property

lim sup
x→Dx̄

N lim
D (x) = N lim

D (x̄) (2.2)

that will be exploited heavily in our subsequent analysis, see [38, Prop. 1.3].
Note that, for D being convex, this limiting normal cone reduces to the standard

normal cone from convex analysis, i.e., we have

N lim
D (x̄) = ND(x̄) := {λ ∈ X | ⟨λ, x− x̄⟩ ≤ 0 ∀x ∈ D }

for any given x̄ ∈ D. For points x̄ ̸∈ D, we set N lim
D (x̄) := ND(x̄) := ∅. For the

convex set C, the standard normal cone and the projection operator are related by

p = PC(y) ⇐⇒ y − p ∈ NC(p), (2.3)

see [5, Prop. 6.46].
We next introduce a stationarity condition which generalizes the concept of a

KKT point to constrained optimization problems with possibly difficult constraints
as given by the set D in our setting (1.1).

Definition 2.1. A feasible point x̄ ∈ X of the optimization problem (1.1) is called
an M-stationary point (Mordukhovich-stationary point) of (1.1) if there exists a mul-
tiplier λ ∈ Y such that

0 ∈ ∇f(x̄) +G′(x̄)∗λ+N lim
D (x̄), λ ∈ NC

(
G(x̄)

)
.

Note that this definition coincides with the one of a KKT point if D is convex. The
following is a sequential version of M-stationarity.

Definition 2.2. A feasible point x̄ ∈ X of the optimization problem (1.1) is called
an AM-stationary point (asymptotically M-stationary point) of (1.1) if there exist
sequences {xk}, {εk} ⊆ X and {λk}, {zk} ⊆ Y such that xk → x̄, εk → 0, zk → 0, as
well as

εk ∈ ∇f(xk) +G′(xk)∗λk +N lim
D (xk), λk ∈ NC

(
G(xk)− zk

)
for all k ∈ N.

Note that the previous definition generalizes the related concept of AKKT points
introduced for standard nonlinear programs in [2] to our setting with the more difficult
constraints. In a similar way, the subsequent regularity conditions are also motivated
by related ones from [3] , where they were presented for standard nonlinear programs.
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Every M-stationary point is obviously also AM-stationary, whereas the opposite
implication will be guaranteed to hold by a regularity condition that will now be
introduced. To this end, let us write

M(x, z) := G′(x)∗NC

(
G(x)− z

)
+N lim

D (x).

Recall that N lim
D (x) is nonempty if and only if x ∈ D, which is therefore an implicit

requirement for the setM(x, z) to be nonempty. Moreover, we consider the set

lim sup
x→x̄,z→0

M(x, z) =
{
v
∣∣∃xk →D x̄, ∃zk → 0 : vk → v and vk ∈M(xk, zk) ∀k ∈ N

}
.

Note that the auxiliary sequence {zk} needs to be introduced since the elements G(xk)
do not necessarily belong to C, whereas xk is supposed to be an element of D.

Definition 2.3. Let x̄ be feasible for (1.1). Then x̄ is called AM-regular for (1.1) if
lim supx→x̄,z→0M(x, z) ⊆M(x̄, 0).

Using this terminology, the following statements hold, cf. [35] for further details.

Theorem 2.4. The following statements hold:

(a) Every local minimum of (1.1) is an AM-stationary point.

(b) If x̄ is an AM-stationary point satisfying AM-regularity, then x̄ is an M-stationary
point of (1.1).

(c) Conversely, if for every continuously differentiable function f , the implication

x̄ is an AM-stationary point =⇒ x̄ is an M-stationary point

holds for the corresponding optimization problem (1.1), then x̄ is AM-regular.

Statement (a) shows that every local minimum of (1.1) is an AM-stationary point even
in the absense of any constraint qualification (CQ for short). Hence AM-stationary
is a (sequential) first-order optimality condition. In order to guarantee that an AM-
stationary point is already an M-stationary point (hence a KKT point in the standard
setting of a nonlinear program, say), we require a CQ, namely the AM-regularity
condition, cf. Theorem 2.4 (b). The final statement (c) of that result shows that, in a
certain sense, AM-regularity is the weakest CQ which implies AM-stationary points
to be M-stationary. In fact, this AM-regularity condition turns out to be a fairly weak
condition. For example, for standard nonlinear programs, AM-regularity is stronger
than the Abadie CQ, but weaker than most of the other well-known CQs like MFCQ
(Mangasarian-Fromovitz CQ), CRCQ (constant rank CQ), CPLD (constant positive
linear dependence), and RCPLD (relaxed CPLD), to mention at least some of the
more prominent ones. We refer the interested reader to [4, 35] and references therein
for further details.

The algorithm, to be described in the following section, is based on the reformu-
lation

min
x,y

f(x) s.t. x− y = 0, G(x) ∈ C, y ∈ D, (2.4)
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of the given optimization problem (1.1). The previous notions of M- and AM-
stationarity and AM-regularity can be directly translated to this program by ob-
serving that (2.4) can be written in the format of (1.1) as

x̃ := (x, y),

f̃(x̃) := f̃(x, y) := f(x),

G̃(x̃) := G̃(x, y) :=

(
G(x)
x− y

)
,

C̃ := C × 0X,

D̃ := X×D.

The counterpart of Theorem 2.4 then also holds for the corresponding (A)M-stationa-
rity and regularity concepts defined for the formulation (2.4). Note that regularity
conditions and constraint qualifications depend on the explicit formulation of a con-
straint system, hence the corresponding concepts are not necessarily equivalent for
the two formulations of our program. We stress, however, that an easy inspection
shows that the important notion of an M-stationary point for (2.4) is equivalent to
the notion of an M-stationary point for (1.1).

For the sake of completenss, and since this condition will be used explicitly in
our convergence analysis, let us write down explicitly the resulting AM-stationarity
condition for the reformulated program (2.4): with the above identifications, a feasible
point x̃∗ of (2.4) is AM-stationary if there exist sequences {x̃k}, {ε̃k}, and {λ̃k}, {z̃k}
such that x̃k → x̃∗, z̃k → 0, ε̃k → 0 as well as

ε̃k ∈ ∇f̃(x̃k) + G̃′(x̃k)∗λ̃k +N lim
D̃

(x̃k) and λ̃k ∈ NC̃

(
G̃(x̃k)− z̃k

)
(2.5)

for all k. Using the definitions of f̃ , G̃ etc., exploiting standard properties of the
limiting and standard normal cones (in particular, the Cartesian product rule, cf.
[40, Prop. 6.41]), and writing x̃k =: (xk, yk), λ̃k =: (λk, µk) as well as zk for the first
block of z̃k (the second block component of z̃k turns out to be irrelevant), we see that
the two conditions from (2.5) can be rewritten as

ε̃k ∈
(
∇f(xk) +G′(xk)∗λk + µk

−µk +N lim
D (yk)

)
and

(
λk

µk

)
∈
(
NC

(
G(xk)− zk

)
X

)
. (2.6)

3 Algorithm and Convergence
The algorithm to be presented here is based on the reformulation (2.4) of the given
program (1.1). The idea is to take advantage of the fact that the constraints G(x) ∈ C
and y ∈ D occur in a decomposed way. This formulation allows to develop an
alternating direction-type penalty scheme for the solution of the orginal problem
(1.1). To this end, let τ > 0 be a penalty parameter and define the partial penalty
function

qτ (x, y) := f(x) +
τ

2

(
∥x− y∥2 + dist2C

(
G(x)

))
. (3.1)
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Note that qτ does not include the potentially difficult constraint x ∈ D, which we
therefore have to deal with explicitly. The general algorithmic scheme that we will
investigate here is the following one.

Algorithm 3.1. (Inexact Penalty Decomposition Method)

(S.0) Choose δ0 ≥ 0 and τ0 > 0, a starting point (x0, y0) ∈ X× X, and set k := 0.

(S.1) If a suitable termination criterion holds: STOP.

(S.2) Compute
(
xk+1, yk+1

)
such that∥∥∇xqτk(x

k+1, yk+1)
∥∥ ≤ δk (3.2)

and
yk+1 ∈ argminy∈D qτk(x

k+1, y) (3.3)

hold.

(S.3) Choose δk+1 ≤ δk, τk+1 > τk, k ← k + 1, and go to (S.1).

Note that Algorithm 3.1 is a very general scheme for the solution of the reformulated
problem (2.4). The main computational burden is in (S.2). We will see how this step
can be realized by an alternating minimization-type iteration in Section 4. Here we
only note that the computation of the exact minimizer yk+1 = argminy∈D qτk(x

k+1, y)
can be carried out very easily if projections onto the set D can be computed effi-
ciently. This follows immediately from the definition of qτk , which implies that yk+1

is characterized by
yk+1 ∈ ΠD(x

k+1). (3.4)

Some examples of complicated (nonconvex) sets D, where this projection is easy to
compute, will be given in the numerical section.

The remaining part of this section is devoted to the global convergence properties
of the general scheme from Algorithm 3.1. The technique of proof patterns the one
used in [25] for an augmented Lagrangian method.

We begin with a feasibility-type result. To this end, recall that all penalty-type
methods suffer from the fact that accumulation points may not be feasible for the
given optimization problem. The following result shows that such an accumulation
point still has a very nice property.

Proposition 3.2. Let {(xk, yk)} be a sequence generated by Algorithm 3.1 with {δk}
being bounded and {τk} → ∞. Then every accumulation point (x̄, ȳ) of the sequence
{(xk, yk)} is an M-stationary point of the feasibility problem

min
x,y

1

2
dist2C

(
G(x)

)
+

1

2
∥x− y∥2 s.t. y ∈ D. (3.5)

Proof. Let {(xk+1, yk+1)}K be a subsequence converging to (x̄, ȳ). Using the derivative
formula of the distance function from (2.1) together with the chain rule, we have, by
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construction,∥∥∇xqτk(x
k+1, yk+1)

∥∥
=

∥∥∥∇f(xk+1) + τk

[
G′(xk+1)∗

[
G(xk+1)− PC

(
G(xk+1)

)]
+ xk+1 − yk+1

]∥∥∥
≤ δk

and
0 ∈ ∇yqτk

(
xk+1, yk+1

)
+N lim

D (yk+1) = τk
(
yk+1 − xk+1

)
+N lim

D (yk+1)

for all k ∈ N. Dividing the first equation by τk and exploiting the cone property in
the second inclusion yields∥∥∥ 1

τk
∇f(xk+1) +G′(xk+1)∗

[
G(xk+1)− PC

(
G(xk+1)

)]
+ xk+1 − yk+1

∥∥∥ ≤ δk
τk

and
0 ∈ yk+1 − xk+1 +N lim

D (yk+1)

for all k ∈ N, cf. [40, Thm. 6.12]. Taking the limit k →K ∞, using the continuity
of ∇f,G,G′, PC , and the robustness property (2.2) of the limiting normal cone, we
obtain

G′(x̄)∗
(
G(x̄)− PC

(
G(x̄)

))
+ x̄− ȳ = 0 and 0 ∈ ȳ − x̄+N lim

D (ȳ).

This shows that (x̄, ȳ) is an M-stationary point of (3.5).

Recall that Algorithm 3.1 automatically generates iterates yk which belong to the
set D. The objective function in (3.5) therefore only measures the violation of the
constraints G(x) ∈ C and x− y = 0, which is included in the penalty term of qτ , i.e.,
(3.5) is a feasibility problem of the decomposed problem (2.4). If x̄ = ȳ, then x̄ turns
out to be an M-stationary point of

min
x

1

2
dist2C

(
G(x)

)
s.t. x ∈ D,

which is the feasibility problem of the original problem (1.1). Though Proposition 3.2
obviously does not guarantee that an accumulation point is feasible (either for the
original or the decomposed formulation), it guarantees at least a stationarity property,
which is the best one can expect in general. Moreover, if the feasible set of (1.1) is
nonempty and the function 1

2
dist2C

(
G(x)

)
of (3.5) is convex, then every M-stationary

point is a global minimum and, hence, a feasible point of (1.1) or (2.4). Note that
the square of the above distance function is automatically convex if the constraint
G(x) ∈ C satisfies standard conditions which imply that this set is convex by itself.

Moreover, one can also define an extended Robinson-type constraint qualification
(which boils down to the extended MFCQ condition for standard nonlinear programs)
which automatically imply that accumulation points of a sequence generated by Al-
gorithm 3.1 are feasible, cf. [12, 27] for further details.
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Hence, under reasonable assumptions, we can guarantee that accumulation points
are automatically feasible for (1.1) or (2.4), whereas, in general, they are at least
M-stationary points. The following global convergence result therefore assumes that
we have a feasible accumulation point and shows that this one is automatically AM-
stationary for problem (2.4).

Theorem 3.3. Let {(xk, yk)} be a sequence generated by Algorithm 3.1 with {δk} → 0
and {τk} → ∞, and let (x̄, ȳ) be a feasible accumulation point of this sequence. Then
(x̄, ȳ) is an AM-stationary point of the optimization problem (2.4).

Proof. Let {(xk+1, yk+1)}K be a subsequence converging to (x̄, ȳ). Recall that (x̄, ȳ)
is feasible, hence G(x̄) ∈ C and x̄ = ȳ ∈ D. We further define the sequences

zk+1 := G(xk+1)− PC

(
G(xk+1)

)
,

λk+1 := τk
(
G(xk+1)− PC

(
G(xk+1)

))
,

µk+1 := τk
(
xk+1 − yk+1

)
,

εk+1 := ∇f(xk+1) + τk
[
G′(xk+1)∗

(
G(xk+1)− PC(G(xk+1))

)
+ xk+1 − yk+1

]
.

Then setting

x̃k+1 :=

(
xk+1

yk+1

)
, ε̃k+1 :=

(
εk+1

0

)
, λ̃k+1 :=

(
λk+1

µk+1

)
, z̃k+1 :=

(
zk+1

0

)
,

we claim that the corresponding four (sub-) sequences {x̃k+1}K = {(xk+1, yk+1)}K ,
{z̃k+1} = {(zk+1, 0)}K , {ε̃k+1}K = {(εk+1, 0)}K , and {λ̃k+1}K = {(λk+1, µk+1)}K
satisfy the properties of an AM-stationary point for problem (2.4) as stated at the end
of Section 2, cf. (2.5) and (2.6). First of all, (x̄, ȳ) is feasible and {(xk+1, yk+1)}K →
(x̄, ȳ) by assumption. Furthermore, by definition of εk+1 and the construction of
Algorithm 3.1, we also have

∥εk+1∥ = ∥∇xqτk(x
k+1, yk+1)∥ ≤ δk → 0.

This obviously implies ∥ε̃k+1∥ → 0. Furthermore, the definitions of λk+1 and µk+1

together with 0 ∈ τk
(
yk+1 − xk+1

)
+N lim

D (yk+1) yield

εk+1 = ∇f(xk+1) +G′(xk+1)∗λk+1 + µk+1 and 0 ∈ −µk+1 +N lim
D (yk+1),

hence the first inclusion in (2.6) holds. To verify the second inclusion, we only have
to take a closer look at the first block. By definition of λk+1 and the relation (2.3)
between the projection and the normal cone, we get

λk+1 = τk
(
G(xk+1)− PC

(
G(xk+1)

))
∈ NC

(
PC(G(xk+1))

)
= NC

(
G(xk+1)− zk+1

)
,

where the last identity comes from the definition of zk+1. Finally, we also have
z̃k+1 →K 0 since zk+1 satisfies

zk+1 = G(xk+1)− PC

(
G(xk+1)

)
→K G(x̄)− PC

(
G(x̄)

)
= 0

by the continuity of G and the projection operator PC as well as the feasibility of x̄.
Altogether, this shows that (x̄, ȳ) is an AM-stationary point of the program (2.4).
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Using Theorem 3.3 together with the counterpart of Theorem 2.4 for (2.4) and the fact
that the M-stationarity conditions for the two problems (1.1) and (2.4) are equivalent,
we directly obtain the following result.

Theorem 3.4. Let {(xk, yk)} be a sequence generated by Algorithm 3.1 with {δk} → 0
and {τk} → ∞, and let (x̄, ȳ) be a feasible accumulation point of this sequence satisfy-
ing AM-regularity for (2.4). Then (x̄, ȳ) is an M-stationary point of the optimization
problem (2.4), and x̄ itself is an M-stationary point of the original problem (1.1).

4 Solution of Subproblems by Inexact Alternating
Minimization

The Penalty Decomposition approach basically consists in approximately solving the
sequence of penalty subproblems at step (S.2) by a two-block decomposition method.
The alternating minimization loop can be stopped, at each iteration, as soon as an
approximate stationary point of the penalty function w.r.t. the first block of variables
x is attained. The instructions of the (inexact) Alternating Minimization loop at a
fixed iteration k of the Penalty Decomposition method are detailed in Algorithm 4.1.

Algorithm 4.1. (Inexact Alternating Minimization)

(S.0) Given δk ≥ 0 and τk > 0, a starting point (xk, yk) ∈ X×D, γ ∈ (0, 1), β ∈ (0, 1),
set ℓ := 0, (u0, v0) = (xk, yk).

(S.1) If
∥∥∇xqτk(u

ℓ, vℓ)
∥∥ ≤ δk: STOP returning (xk+1, yk+1) = (uℓ, vℓ).

(S.2) Choose a positive definite self-adjoint linear map Hℓ, set dℓ = −Hℓ(∇xqτk(u
ℓ, vℓ))

and compute

αℓ = max
j∈N
{βj : qτk(u

ℓ + βjdℓ, vℓ) ≤ qτk(u
ℓ, vℓ) + γβj⟨∇xqτk(u

ℓ, vℓ), dℓ⟩} (4.1)

(S.3) Set uℓ+1 = uℓ + αℓdℓ.

(S.4) Compute vℓ+1 ∈ argminv∈D qτk(u
ℓ+1, v) = ΠD(u

ℓ+1).

(S.5) Set ℓ = ℓ+ 1 and go to (S.1).

As already pointed out, if we assume that projections onto the set D are easily
computable, the update of the second block of variables can be carried out exactly
by (3.4).

On the other hand, an exact x-update step may be prohibitive in most applica-
tions. For this reason, the x-variable is only updated by a descent step along a descent
direction, with a step size selected by an Armijo-type line search.

Note that the direction dℓ = −Hℓ(∇xqτk(u
ℓ, vℓ)) is certainly a descent direction,

since Hℓ is positive definite, ∇xqτk(u
ℓ, vℓ) ̸= 0 and, thus,

⟨∇xqτk(u
ℓ, vℓ), dℓ⟩ = −⟨∇xqτk(u

ℓ, vℓ), Hℓ(∇xqτk(u
ℓ, vℓ))⟩ < 0. (4.2)

10



The Armijo line search provides a sufficient decrease granting, under suitable
assumptions on the sequence of maps Hℓ, the convergence of the entire alternate
minimization scheme.

Note that by properly choosing Hℓ we can retrieve the descent directions employed
in most widely employed nonlinear optimization solvers. This point, which we will
emphasize again later on, is particularly relevant from the computational point of
view.

Throughout this section, we make the following assumption.

Assumption 4.2. f(x) has bounded level sets upon X, i.e., Lf (η) = {x ∈ X | f(x) ≤
η} is bounded for any η ∈ R.

We then begin by proving that, under Assumption 4.2, the penalty function has
bounded level sets for any nonnegative value of the penalty parameter τ .

Lemma 4.3. The penalty function qτ (x, y) has bounded level sets for any τ ≥ 0.

Proof. Consider any η ∈ R. From Assumption 4.2, the level set Lf (η) is bounded.
Let us consider Lqτ (η) for any τ ≥ 0.

Assume by contradiction that Lqτ (η) is not bounded, i.e., there exists {(xt, yt)}
such that (xt, yt) ∈ Lqτ (η) for all t and ∥(xt, yt)∥ → ∞. Then, either ∥xt∥ → ∞ or
∥yt∥ → ∞.

If ∥xt∥ → ∞, we have f(xt) > η for t sufficiently large, being Lf (η) bounded.
But then, from the definition of qτ (x, y), we have for t sufficiently large qτ (x

t, yt) ≥
f(xt) > η, which contradicts {(xt, yt)} ⊆ Lqτ (η).

Thus, ∥yt∥ → ∞ while ∥xt∥ stays bounded. However,

qτ (x
t, yt) = f(xt) +

τ

2

(
∥xt − yt∥2 + dist2C

(
G(x)

))
> η

for t sufficiently large, as ∥xt − yt∥2 →∞, dist2C
(
G(x)

)
≥ 0 and f is bounded having

compact level sets. This again is a contradiction, which completes the proof.

It can be easily seen that step (S.2) of Algorithm 4.1 is well-defined, i.e., there exists
a finite integer j such that βj satisfies the acceptability condition (4.1). Moreover the
following result can be readily obtained by standard results in nonlinear optimization
[10].

Lemma 4.4. Let {(uℓ, vℓ)} be the sequence generated by Algorithm 4.1. Let T ⊆
{0, 1, 2, . . .} be an infinite subset such that

lim
ℓ→∞
ℓ∈T

(uℓ, vℓ) = (ū, v̄).

Let {dℓ} be a sequence of directions such that ⟨∇xqτk(u
ℓ, vℓ), dℓ⟩ < 0 and assume that

∥dℓ∥ ≤ M for some M > 0 and for all ℓ ∈ T . If, for any fixed (outer iteration) k,
the following equation holds

lim
ℓ→∞
ℓ∈T

qτk(u
ℓ, vℓ)− qτk(u

ℓ + αℓd
ℓ, vℓ) = 0,

11



then we have
lim
ℓ→∞
ℓ∈T

⟨∇xqτk(u
ℓ, vℓ), dℓ⟩ = 0.

Proof. Since, for any ℓ, αℓ is chosen according to (4.1), we have

qτk(u
ℓ+1, vℓ) ≤ qτk(u

ℓ, vℓ) + γαℓ⟨∇xqτk(u
ℓ, vℓ), dℓ⟩.

Taking the limits for ℓ ∈ T , ℓ→∞, we get

lim
ℓ→∞
ℓ∈T

qτk(u
ℓ + αℓd

ℓ, vℓ)− qτk(u
ℓ, vℓ) ≤ lim

ℓ→∞
ℓ∈T

γαℓ⟨∇xqτk(u
ℓ, vℓ), dℓ⟩ ≤ 0,

where the last inequality comes from the fact that γ > 0, αℓ ≥ 0 and ⟨∇xqτk(u
ℓ, vℓ), dℓ⟩ <

0 by assumption. From the hypotheses, we also have that the leftmost limit goes to
0, hence we obtain

lim
ℓ→∞
ℓ∈T

γαℓ⟨∇xqτk(u
ℓ, vℓ), dℓ⟩ = 0. (4.3)

Assume, by contradiction, that ⟨∇xqτk(u
ℓ, vℓ), dℓ⟩T does not converge to zero. Subse-

quencing if necessary, we may assume that limℓ→T∞⟨∇xqτk(u
ℓ, vℓ), dℓ⟩ = −ν for some

number ν > 0. On the other hand, we have (uℓ, vℓ) →T (ū, v̄) by assumption, and
{dℓ} is bounded, so we may also assume that {dℓ}T → d̄ for some limit point d̄.
Altogether, we then have

⟨∇xqτk(ū, v̄), d̄⟩ = lim
ℓ→∞
ℓ∈T

⟨∇xqτk(u
ℓ, vℓ), dℓ⟩ = −ν < 0.

Exploiting (4.3), we see that αℓ →T 0 holds. Consequently, for all ℓ ∈ T sufficiently
large, we have αℓ < β0 = 1 and thus

qτk

(
uℓ +

αℓ

β
dℓ, vℓ

)
> qτk(u

ℓ, vℓ) + γ
αℓ

β
⟨∇xqτk(u

ℓ, vℓ), dℓ⟩.

By the mean-value theorem, we can write

qτk

(
uℓ +

αℓ

β
dℓ, vℓ

)
= qτk(u

ℓ, vℓ) +
αℓ

β
⟨∇xqτk(z

ℓ, vℓ), dℓ⟩

for some zℓ = uℓ + θℓ
αℓ

β
dℓ, θℓ ∈ (0, 1). Subtracting the last two relations and dividing

by αℓ/β, we get
0 > γ⟨∇xqτk(u

ℓ, vℓ), dℓ⟩ − ⟨∇xqτk(z
ℓ, vℓ), dℓ⟩.

On the other hand,
lim
ℓ∈T
ℓ→∞

zℓ = lim
ℓ∈T
ℓ→∞

uℓ + θℓ
αℓ

β
dℓ = ū

since αℓ →T 0 and dℓ → d̄. Taking the limits in the previous inequality, we finally get

γ⟨∇xqτk(ū, v̄), d̄⟩ ≤ ⟨∇xqτk(ū, v̄), d̄⟩,

which is absurd since γ ∈ (0, 1) and ⟨∇xqτk(ū, v̄), d̄⟩ = −ν < 0.

12



In order to ensure that the sequence generated by the Alternating Minimization
scheme properly converges, we need the sequence of directions {dℓ} to satisfy suitable
properties. Here, in particular, we assume that the entire sequence of linear mappings
{Hℓ} satisfies the bounded eigenvalues condition [10, Sec. 1.2]:

c1∥z∥2 ≤ ⟨z,Hℓ(z)⟩ ≤ c2∥z∥2 ∀ z ∈ X. (4.4)

We are finally able to show that the inexact alternating minimization loop stops
in a finite number of iterations providing a point (xk+1, yk+1) satisfying conditions
(3.2)-(3.3).

Proposition 4.5. Assume the sequence of linear maps {Hℓ} in Algorithm 4.1 satisfies
the bounded eigenvalues condition (4.4). Then the algorithm cannot cycle infinitely
and determines in a finite number of iterations a point (xk+1, yk+1) such that∥∥∇xqτk(x

k+1, yk+1)
∥∥ ≤ δk

and
yk+1 = argmin

y∈D
qτk(x

k+1, y).

Proof. Suppose, by contradiction that, for some values of τk and δk, the sequence
{(uℓ, vℓ)} is infinite. From the instructions of the algorithm, it is easy to see that we
have

qτk(u
ℓ+1, vℓ+1) ≤ qτk(u

0, v0),

cf. (4.5). Hence, for all ℓ ≥ 0, the point (uℓ, vℓ) belongs to the level set

{(u, v) ∈ X× X | qτk(u, v) ≤ qτk(u
0, v0)}.

Lemma 4.3 implies that this is a bounded set. Therefore, the sequence {(uℓ, vℓ)}
admits cluster points. Let K ⊆ N be an infinite subset such that

lim
ℓ→∞
ℓ∈K

(uℓ, vℓ) = (ū, v̄).

Recalling the continuity of the gradient, we have

lim
ℓ→∞
ℓ∈K

∇xqτk(u
ℓ, vℓ) = ∇xqτk(ū, v̄).

We now show that ∇xqτk(ū, v̄) = 0. Taking into account the instructions of the algo-
rithm, we have

qτk(u
ℓ+1, vℓ+1) ≤ qτk(u

ℓ+1, vℓ) = qτk(u
ℓ + αℓd

ℓ, vℓ) < qτk(u
ℓ, vℓ). (4.5)

By (4.4), it can be easily seen that

∥dℓ∥2 ≤ c22∥∇xqτk(u
ℓ, vℓ)∥2.

13



Since ∇xqτk(u
ℓ, vℓ) →K ∇xqτk(ū, v̄), we see that there exists a constant M > 0 such

that ∥dℓ∥ ≤M for all ℓ ∈ K.
Since the entire sequence {qτk(uℓ, vℓ)} is monotonically decreasing by (4.5), and

the subsequence {qτk(u, v)}K converges to qτk(ū, v̄), it follows that the whole sequence
of function values converges to this limit, i.e., we have

lim
ℓ→∞

qτk(u
ℓ, vℓ) = qτk(ū, v̄).

Hence (4.5) yields lim
ℓ→∞

qτk(u
ℓ, vℓ) − qτk(u

ℓ + αℓd
ℓ, vℓ) = 0. Thus, the hypotheses of

Lemma 4.4 are satisfied. Moreover, from (4.2) and (4.4), we have

⟨∇xqτk(u
ℓ, vℓ), dℓ⟩ ≤ −c1∥∇xqτk(u

ℓ, vℓ)∥2.

Using Lemma 4.4, we therefore obain

0 = lim
ℓ→∞
ℓ∈K

⟨∇xqτk(u
ℓ, vℓ), dℓ⟩ ≤ lim

ℓ→∞
ℓ∈K

−c1∥∇xqτk(u
ℓ, vℓ)∥2 ≤ 0,

which implies that, for ℓ ∈ K sufficiently large, we have ∥∇xqτk(u
ℓ, vℓ)∥ ≤ δk, i.e., that

the stopping criterion of step (S.1) is satisfied in a finite number of iterations, and
this contradicts the fact that {(uℓ, vℓ)} is an infinite sequence. Condition (3.2) is then
satisfied by the stopping criterion, whereas condition (3.3) follows by construction.

In order for the theoretical analysis to hold, we only need to ensure that Hℓ

satisfies condition (4.4). This assumption can be guaranteed a priori by different
ways of defining Hℓ. Among these valid choices, we can find classical setups leading
back to iterations of standard algorithmic schemes such as gradient method (Hℓ = I),
Newton method (Hℓ = ∇2

xxqτk(u
ℓ, vℓ), provided f is uniformly convex), quasi-Newton

methods and limited-memory BFGS type methods.
This aspect is crucial in practice: we are allowed to employ the most efficient

solvers for nonlinear optimization to carry out step (S.3) of the Alternate Minimiza-
tion algorithm and thus speed up the computation of step (S.2) of Algorithm 3.1,
which is the most burdensome one. As a comparison, the Augmented Lagrangian al-
gorithm from [25] has to resort to a gradient-based method to solve the (constrained)
sequential subproblems, possibly resulting in an inefficient method especially for ill-
conditioned problems. Another difference is pointed out in the following comment.

Remark 4.6. The Augmented Lagrangian algorithm from [25] has to compute pro-
jections onto the set D within the computation of the stepsizes, i.e., it may require
many projections for a single (inner) iteration. This is a notable difference to our
Algorithm 4.1, which requires only a single projection after the computation of the
new iterate uℓ+1. In fact, it would also be possible to apply several iterations of an
unconstrained optimization solver to the subproblem of minimizing the penalty func-
tion qτk(·, vℓ) before updating the v-component, i.e., before using a single projection
step.
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5 Particular Instances
The idea of this section, similar to [25], is to present some difficult optimization
problems where projections onto the complicated set D can be carried out easily.
This section does not contain any proofs since the corresponding results are known
from the literature. However, since these particular instances will be used in our
numerical section, they have to be discussed in some detail.

5.1 The case of Sparsity Constraints

A particular case of problem (1.1) is that of sparsity constrained optimization prob-
lems, i.e., optimization problems of the form

min
x∈Rn

f(x)

s.t. G(x) ∈ C,

x ∈ D = {x | ∥x∥0 ≤ s},
(5.1)

where s < n and ∥x∥0 denotes the zero pseudo-norm of x, i.e., the number of nonzero
components of x. The Penalty Decomposition approach was originally proposed in
[33] for this class of problems, and the inexact version was then proposed for the case
{x | G(x) ∈ C} = Rn [31].

In fact, from the analysis in Section 3, we can deduce that the convergence results
continue to hold for the inexact version of the algorithm even in presence of additional
constraints.

The Penalty Decomposition method is particularly appealing, from a computa-
tional perspective, for this class of problems since the Euclidean projection onto the
sparse set D is easily obtainable in closed form, as outlined e.g. in [31, 33]. Let us
denote the index set of the largest s variables at x̄ in absolute value by Gs(x̄); for
simplicity, we furthermore assume that cases of tie are handled unambiguously. Then,
the projection of x̄ onto D is given by

(ΠD(x̄))i =

{
x̄i if i ∈ Gs(x̄),
0 otherwise.

(5.2)

In other words, the projection can be simply computed by setting to zero the n − s
smallest components of x̄

Note that M-stationarity, as defined in Definition 2.1, coincides with Lu-Zhang
stationarity [30], which is the property guaranteed to hold for cluster points obtained
by the original Penalty Decomposition method [33]. Hence, we can conclude, from
the results shown in Section 3, that the inexact Penalty Decomposition method has
the same convergence properties as its exact counterpart, and that the M-stationarity
concept includes a corresponding stationarity condition particularly designed for car-
dinality constrained problems. We note, however, that there exist further stationarity
concepts in this setting, see the corresponding discussions in, e.g., [6, 29,30,33].
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5.2 Low-Rank Approximation Problems

Here we consider the space X = Rm×n with given n,m ∈ N, n,m ≥ 2; equipped with
the standard Frobenius inner product, this is a Euclidean space.

In applications like computer vision, machine learning, computer algebra or signal
processing, there is a strong interest in low-rank matrix optimization problems, see,
e.g., [7, 14, 15, 34, 39]. Specifically, letting q = min(m,n) and given κ ≤ q − 1, we are
interested in problems of the form

min
X∈Rm×n

f(X)

s.t. G(X) ∈ C,

X ∈ D = {X | rank(X) ≤ κ}.

(5.3)

The set D has been thoroughly analyzed from a geometrical point of view, see
e.g. [24] for a formula for N lim

D (X). Interestingly, elements of ΠD(X) can be easily
constructed exploiting the singular value decomposition of X [34, 43].

Proposition 5.1. Let X ∈ X = Rm×n and let X = UΣV T its singular value decom-
position, with orthogonal matrices U ∈ Rm×m, V ∈ Rn×n and Σ ∈ Rm×n diagonal
with entries in non-increasing order, i.e.,

Σij =

{
σi if i = j,

0 otherwise,
σi ≥ σj ∀ i ≥ j,

being σ1, . . . , σq the singular values of X. Moreover, let Σ̂ the matrix obtained setting
to zero the q − κ bottom-right elements of Σ, i.e.,

Σ̂ij =

{
σi if i = j ≤ κ,

0 otherwise.

Then, X̂ = UΣ̂V T ∈ ΠD(X).

Of course, the computation of the SVD for a matrix X is not a costless operation,
so obtaining an element of ΠD(X), even though conceptually simple, requires a non-
negligible amount of computing resources.

If we restrict the discussion to the case of symmetric positive semi-definite matri-
ces, i.e., D = {X ∈ Rn×n | X ⪰ 0, rank(X) ≤ κ}, we can resort to the eigenvalue
decomposition instead of the SVD [25,43].

Proposition 5.2. Let X ∈ Rn×n be a symmetric matrix. Let us denote by X =∑n
i=1 λiviv

T
i its eigenvalue decomposition, where λ1 ≥ . . . ≥ λn are the non-increasingly

ordered eigenvalues with corresponding eigenvectors v1, . . . , vn. Then, we have X̂ =∑κ
i=1max{0, λi}vivTi ∈ ΠD(X).

We can thus observe that, in this particular case, in order to compute the pro-
jection onto the set D we only need to find the κ largest eigenvalues with the corre-
sponding eigenvectors; this can be done efficiently, especially when κ is small, as in
most applications.
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A (exact) Penalty Decomposition scheme was developed in [43] to tackle low-rank
optimization problems, exploiting the above closed form rules for projection onto
D both in the general and the positive semi-definite cases. The analysis in Section
3 shows that the algorithmic framework maintains the same convergence properties
even when the X-update step is carried out in an inexact fashion.

5.3 Box-Switching Constrained Problems

A wide class of relevant optimization problems with difficult geometric constraints
is constituted by the so called box-switching constrained problems [25] that can be
formalized as follows:

min
x,y∈Rn

f(x, y)

s.t. G(x, y) ∈ C

(x, y) ∈ D = {(x, y) | xiyi = 0 ∀ i, lx ≤ x ≤ ux, ly ≤ y ≤ uy},

(5.4)

where, for simplicity, we assume that lx ≤ 0 ≤ ux and ly ≤ 0 ≤ uy.
This setting covers various disjunctive programming problems such as problems

with

• switching constraints [37]: lx = ly = −∞, ux = uy =∞,

• complementarity constraints [42]: lx = ly = 0, ux = uy =∞,

• relaxed sparsity constraints [13]: lx = −∞, ux =∞, ly = 0, ly = 1.

It is easy to realize that projection onto the set D in this case is simple. Indeed,
let us first consider the projection onto classical bound constraints [l, u] of a vector
w. Since the constraints are separable, we can immediately obtain the projection by
computing, for each component i, the value

(P[l,u](w))i =


wi if li ≤ wi ≤ ui,

li if wi < li,

ui if wi > ui.

With this in mind, noting that the set D is also (pairwise) separable, we can obtain
an element (x̂, ŷ) ∈ ΠD[(x̄, ȳ)] by first computing

x̃ = P[lx,ux](x̄), ỹ = P[ly ,uy ](ȳ)

and then setting

(x̂i, ŷi) =

{
(x̃i, 0) if x̄2

i + (ỹi − ȳi)
2 ≥ (x̃i − x̄i)

2 + ȳ2i ,

(0, ỹi) otherwise.

Computing the projection onto D thus amounts to computing 2n projections onto
real intervals, which can be done with low computational effort. For this reason,
a Penalty Decomposition type scheme again appears particularly appealing for this
class of problems.
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5.4 General Disjunctive Programs

A broad class of optimization problems with geometric constraints is represented by
programs where variables are required to satisfy at least one among several sets of
constraints:

min
x∈Rn

f(x)

s.t. G(x) ∈ C,

x ∈ D =
N⋃
i=1

Di,

(5.5)

where Di, i = 1, . . . , N are closed convex sets. The resulting overall feasible set of
these disjunctive programming problems [18] typically takes the structure of a non-
convex, disconnected set. Projections onto D in this case can be computed by finding
the closest among the N projections onto D1, . . . , DN :

ΠD(x) = argmin
z
{∥z − x∥ | z = PDi

(x), i = 1, . . . , N}.

Since, in general, the projection onto a convex set is already an expensive operation,
the projection onto D is consequently a costly task. We shall observe that, in fact, the
settings analyzed in the previous subsections are particular instances of this setting
where the peculiar structure of sets Di allows to efficiently compute the projection in
smart ways.

The Penalty Decomposition approach might be appealing for problems of this
form when the constraints G(x) ∈ C are numerous and/or nontrivial and N is also
large. In these cases, the brute force strategy of solving N problems with convex
constraints may become computationally unsustainable and PD might represent an
appealing alternative.

6 Computational Experiments
In this section, we report the results of an extensive experimentation aimed at demon-
strating the potential and the benefits of using the Penalty Decomposition algorithm
on various classes of problems. The experiments have two main goals:

• analyze the behavior of penalty decomposition in different settings and under-
stand how to make it as efficient as possible;

• compare the penalty decomposition approach with the augmented Lagrangian
method proposed in [25], which is, to the best of our knowledge, the only avail-
able algorithm from the literature designed to handle the general setting (1.1).

The code for the experiments has entirely been implemented in Python 3.9 and all
the experiments have been run on a machine with the following specifications: Intel
Xeon Processor E5-2430 v2, 6 physical cores (12 threads), 2.50 GHz, 16 GB RAM.

We considered benchmarks of problems from the classes discussed in Section 5, i.e.,
cardinality constrained problems, low-rank approximation problems and disjunctive
programming problems.
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For the Penalty Decomposition approach (Algorithm 3.1), we set an upper bound
to the value of τk equal to 108. We employed for the inner loop (Algorithm 4.1) the
stopping criterion

qτk(u
ℓ, vℓ)− qτk(u

ℓ+1, vℓ+1) ≤ ϵin, (6.1)

whereas for the outer loop we employ

∥xk+1 − yk+1∥+ distC(G(xk+1)) ≤ ϵout.

Both the above stopping conditions are the ones suggested in [33] and we set ϵin = 10−5

and ϵout = 10−5.
As unconstrained optimization solvers for the x-update step, we implemented the

gradient descent algorithm with Armijo line search. We also ran experiments using
the implementations of the conjugate gradient (CG, [10]), BFGS [10] and L-BFGS
[32] methods available in the scipy library. For all of these algorithms, we used
the stopping criterion ∥∇xqτk(u

ℓ+1, vℓ)∥ ≤ ϵsolv, with ϵsolv = 10−5 if not specified
otherwise.

As for the augmented Lagrangian method (ALM) from [25], it employs as inner
solver of subproblems the spectral gradient method (SGM) proposed in the same
work. With reference to [25, Algorithm 3.1], we set σ = 10−5, γ0 = 1, γmax = 1012,
m = 10, τ = 2 (note that here it does not denote the penalty parameter). As
for the ALM ([25, Algorithm 4.1]), we set η = 0.8. We employed the multipliers
safeguarding technique, projecting the values obtained using the standard Hestenes-
Powell-Rockafellar updates onto the box [−108, 108]. For the spectral gradient loop,
we used the stopping condition

max
j=0,...,m−1

qτk(x
ℓ−m)− min

j=0,...,m
qτk(x

ℓ+1−m) ≤ 10−5,

where here we have used the notation of the present paper. We used the same stopping
condition (6.1) as the PD method with ϵin = 10−5 for the inner loop of the ALM,
whereas for the outer loop we require distC(G(xk+1)) ≤ ϵout, with ϵout = 10−5. The
stopping conditions have been chosen as similar as possible for the two algorithms, in
order to have a fair comparison.

We also did experiments with a variant of our proposed approach, employing
safeguarded Lagrange multipliers in an augmented Lagrangian fashion, i.e., we take
the ALM approach from [25] and combine it with the decomposition idea to solve the
resulting subproblems. The setting of multipliers and penalty parameter updates is
the same as the one we employed for the ALM itself. In the following, we will show
that this modification (denoted PDLM), which does not have any major impact in the
convergence analysis, leads to significant benefits in practice. It is interesting to note
that this finding is in contrast with the remarks that can be found in the conclusions
of [33].

Finally, we point out that we did not report the values for the initial penalty
parameter τ0 and its growing rate ατ . Indeed, these parameter are quite crucial for
the overall performance of both PD and ALM algorithms and have been suitably
selected for each class of problems. Thus, we will report each time the specific values
of these two parameters.
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6.1 Sparsity Constrained Optimization Problems

We begin our numerical analysis with sparsity constrained problems. The reason we
start with this class of problems is twofold: a) the original PD approach was designed
for these problems and b) results are more easily and intuitively interpretable.

We considered various experimental settings with problems of this class. Firstly,
we begin with the simplest possible problems, i.e., convex quadratic problems with
only sparsity constraints:

min
x

1

2
xTQx+ νcTx s.t. ∥x∥0 ≤ s. (6.2)

We randomly generated instances of problem (6.2), according to the following proce-
dure:

Q = Y DY, Y = I − 2

∥y∥2
yyT , y ∈ Rn : yi ∼ U(−1, 1), (6.3)

D = diag(d1, . . . , dn), di = exp

(
i− 1

n− 1
ncond

)
, c ∈ Rn : c ∼ U(−1, 1) (6.4)

where ncond denotes the desired condition number of the matrix Q. We generated
three instances with ncond = 10, n ∈ {10, 25, 50}, s = 3, ν = 5 to evaluate the impact
of different solvers for the x-update step on the alternating minimization scheme and,
in turn, on the overall PD approach.

We report in Table 6.1 the results obtained by running PD equipped with dif-
ferent inner solvers starting from the origin. We also ran the variant with Lagrange
multipliers of our approach only with L-BFGS as inner solver; here we set τ0 = 1
and ατ = 1.1. Moreover, we considered the spectral gradient method for comparison.
Note that, since there are no additional constraints, there is no need to resort to the
ALM.

As expected, the use of quasi-Newton type solvers is highly beneficial: BFGS leads
to much faster convergence than the simple gradient method; the L-BFGS provides an
additional, substantial speed up. The presence of Lagrange multipliers also seems to
be beneficial, both in terms of efficiency and of quality of the obtained solution. Based
on these result, in the following we will always be using L-BFGS for the x-update
step in Algorithm 4.1.

Note that the spectral gradient method clearly outperforms the PD approach in
this case. This is indeed not surprising: being there no additional constraint, there is
no need with the SGM to adopt a sequential penalty strategy, which is costly.

Next, we turn to a simple verification of the convergence properties of the PD ap-
proach. In particular, we consider the artificial example [6, Example 2.2], which is an
instance of (6.2) with Q = E+I, being E the matrix of all ones, c = −(3, 2, 3, 12, 5)T ,
ν = 1 and s = 2. We ran both PD and PDLM, with ατ = 1.1 from 1000 different
starting points randomly generated in the hyper-box [−10, 10]5. We observed that the
result strongly depends on the choice of τ0, as we report in Table 6.2. Interestingly,
both algorithms always converged to the global minimum f(x⋆) = −41.33 when we
set τ0 = 0.1; in fact, we observed the same result for smaller values of τ0. On the
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Table 6.1: Results of experiments on three random instances of cardinality constrained
quadratic problems (6.2). Problems were generated according to (6.3)-(6.4) with
ncond = 10, s = 3, ν = 5.

n Algorithm f_val runtime (s)

10

PD_gd -9.70 3.68
PD_bfgs-scipy -9.70 0.53
PD_lbsfgs-scipy -9.70 0.31
PDLM_lbsfgs-scipy -9.63 0.26
SGM -9.63 0.05

25

PD_gd -15.12 5.96
PD_bfgs-scipy -15.12 0.91
PD_lbsfgs-scipy -15.12 0.54
PDLM_lbsfgs-scipy -16.19 0.24
SGM -15.58 0.01

50

PD_gd -23.92 9.17
PD_bfgs-scipy -23.92 1.69
PD_lbsfgs-scipy -23.92 0.89
PDLM_lbsfgs-scipy -23.92 0.31
SGM -23.92 0.01

other hand, as τ0 grows worse local minimizers become increasingly probable; the
presence of Lagrange multipliers seems to alleviate, but not to suppress, this incon-
venience. We argue that large values of τ0 make PD schemes more dependent on the
starting point: since usually x0 = y0, the penalty term is at the first iteration equal
to τ0∥x− x0∥2, which binds variable x close to the start.

Table 6.2: Convergence of Penalty Decomposition methods on [6, Example 2.2] for
different values of τ0. We report the number of times an objective value has been
obtained out of 1000 runs from different starting points chosen randomly in [−10, 10]n.

τ0 Algorithm f = −41.33 f = −39 f = −36.33 Others

0.1
PD 1000 0 0 0
PDLM 1000 0 0 0

1
PD 661 339 0 0
PDLM 1000 0 0 0

10
PD 683 275 42 0
PDLM 620 326 54 0

100
PD 549 250 40 161
PDLM 527 295 57 121

At this point, we have devised a setting that apparently makes the PD approach
efficient and effective. We therefore expect the algorithm to indeed be a good choice
to resort to when: a) additional constraints are present and/or b) the projection
operator is costly. In the former case, SGM needs to be employed within another se-

21



quential scheme, namely, the ALM, which is the only alternative to the PD available
from the literature; in the latter case, the advantage of PD over the ALM may not
be straightforward. In fact, the two algorithms share a similar structure, sequentially
solving penalized subproblems; in order to do so, unconstrained continuous optimiza-
tion steps and projections onto D are repeatedly carried out; however, in PD many
descent steps can be carried out before turning to the projection step; on the contrary,
in the ALM we need to do the projection after every gradient step (in fact, we do
it many times per iteration of the SGM to satisfy the acceptance criterion), cf. the
discussion in Remark 4.6.

We now turn to sparsity constrained problems with additional constraints. In par-
ticular, we keep considering convex quadratic problems, but with simplex constraints,
i.e., problems of the form

min
x

1

2
xTQx+ νcTx, s.t. eTx = 1, x ≥ 0, ∥x∥0 ≤ s,

where e ∈ Rn denotes the vector of all ones. This is a classical sparse portfolio
optimization problem [11], where Q and c denote the covariance matrix and the
mean of n possible assets.

Portfolio optimization problems are particularly useful to test the proposed al-
gorithm since we can easily obtain the global optimum to be used as a reference.
Indeed, we can do so exploiting the mixed-integer reformulation of the problem with
binary indicator variables and big-M type constraints and employing efficient software
solvers such as Gurobi [22].

We first consider synthetic problems. Using (6.3)-(6.4), we generated 10 problems
for each combination of n ∈ {20, 40, 60} and ncond ∈ {10, 100, 500}, for a total of 90
problems. We set s = 4 when n = 20, s = 7 for n = 40 and s = 9 for n = 60.
We set ν = 1 and use as starting point of the experiments x̃ = (1/n, . . . , 1/n)T ;
we ran PD, PDLM, ALM all with τ0 = 1 and ατ = 1.1. We also ran Gurobi on
all instances to obtain the global optimizer to be used as reference; note that Gurobi
indeed finds the certified global minimum in tens of seconds. The overall results of the
experiments are reported in Figure 6.1. The results concerning efficiency (runtime) are
presented in the form of performance profiles [17] in Figure 6.1(a). We can observe
that Penalty Decomposition with Lagrange multipliers is generally faster than the
other two considered algorithms. As for the quality of the retrieved solutions, we plot
in Figure 6.1(b) the cumulative distribution of the relative gap between the solution
found by a solver and the certified global optimum found with Gurobi; the result of
PDLM is surprisingly remarkable, as it almost always reached a value very close, and
often equal to, the global optimum; on the contrary, both PD and the ALM end up
with substantially suboptimal solutions in almost a half of the cases.

We conclude the analysis on sparsity constrained problems looking at the results
on 6 instances of real world portfolio selection problems. In particular, the data used
in the experiments consists of daily data for securities from the FTSE 100 index,
from 01/2003 to 12/2007. The three datasets are referred to as DTS1, DTS2, and
DTS3, and are formed by n = 12, 24, and 48 securities, respectively. We also included
three datasets from the Fama/French benchmark collection (FF10, FF17, and FF48,
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Figure 6.1: Results of experiments on 90 randomly generated sparse portfolio selection
problems, running PD, PDLM and the ALM.

with n equal to 10, 17, and 48), using the monthly returns from 07/1971 to 06/2011.
The datasets are generated as in [16]. For each dataset, we define an instance of
problem (6.1): the values of s and ν are set as reported in Table 6.3, and are such
that the cardinality constraint is active at the optimal solution. We used again
x̃ = (1/n, . . . , 1/n)T as starting point. As for the penalty parameter, we set τ0 = 0.01
and for the Penalty Decomposition methods, whereas we found that a larger value
τ0 = 1 was beneficial for the ALM. The parameter ατ was set to 1.01 for all methods.
The results are reported in Table 6.3 and we can observe that the trends outlined by
the previous experiments are substantially confirmed.

6.2 Low-Rank Optimization Problems

In this section, we study problems as discussed in Section 5.2 where X = Rm×n and
D consists of a low-rank matrices space.

To begin with, we consider the class of nearest low-rank correlation matrix prob-
lems, which was already used as a benchmark in [43]. In detail, the problem can be
formulated as

min
X∈Rn×n

1

2
∥X − A∥2F s.t. XT = X, X ⪰ 0, diag(X) = e, rank(X) ≤ κ,

where A is a given symmetric correlation matrix. The test problems we consider are
the same as in [43], and their corresponding matrix A is defined as follows:

• (P1) Aij = 0.5 + 0.5 exp(−0.05|i− j|) for all i, j;

• (P2) Aij = exp(−|i− j|) for all i, j;

• (P3) Aij = 0.6 + 0.4 exp(−0.1|i− j|) for all i, j.

For each of the above problems, we considered the instances with n = 200 and n = 500
and a value of κ = 5, 10 and 20.
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Table 6.3: Results of experiments on 6 real world sparse portfolio selection problems,
solved using different algorithmic approaches.

Problem (s,ν) Algorithm f_val runtime (s)

DTS1 (2, 0.001)

Gurobi 4.10e-05 0.02
PD 4.27e-05 2.01
PDLM 4.25e-05 2.07
ALM 4.69e-05 8.72

DTS2 (4, 0.001)

Gurobi 2.52e-05 0.04
PD 2.75e-05 2.49
PDLM 2.75e-05 1.55
ALM 2.75e-05 5.36

DTS3 (6, 0.001)

Gurobi 2.19e-05 0.19
PD 2.43e-05 4.30
PDLM 2.42e-05 1.72
ALM 2.48e-05 5.98

FF10 (2, 0.05)

Gurobi 2.87e-05 0.01
PD 3.07e-05 2.43
PDLM 2.96e-05 3.38
ALM 2.87e-05 7.21

FF17 (2, 0.05)

Gurobi 2.08e-05 0.01
PD 3.34e-05 3.26
PDLM 3.11e-05 3.98
ALM 3.46e-05 47.89

FF48 (5, 0.05)

Gurobi -1.10e-05 0.06
PD 1.59e-05 11.09
PDLM -9.30e-06 5.49
ALM 9.66e-05 0.47

We experimentally compared the ALM and some implementations of the Penalty
Decomposition approach; for all these algorithms, we set τ0 = 1 and ατ = 1.2. We
also needed for these experiments to set the upper bound on the value of τk to 1012.

Note that solving the X-update subproblem with an iterative solver has a sig-
nificant cost, as we are considering problems with up to n × n = 250000 variables;
moreover, we are dealing with ill-conditioned quadratic problems, thus we found con-
venient switching from L-BFGS to the CG method. We tested two settings for the
X-update step with CG: a strongly inexact setting, where the CG method is stopped
after at most 5 steps (PD-cg-inaccurate), or when the norm of the gradient is
smaller than ϵsolv = 0.1, and a more accurate setting, where up to 20 CG steps are
carried out and the tolerance for the gradient norm stopping condition is set to 0.001
(PD-cg-accurate).

In addition, we note that, in fact, the X-update subproblem

min
X∈Rn×n

X=XT

1

2
∥X − A∥2F +

τ

2
(∥X − Y ∥2F + ∥diag(X)− e∥2)
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can be solved to global optimality in closed form; we thus also carried out experiments
with this option (PD-exact); moreover, we also consider the strategy adopted in [43],
where the constraint diag(X) = e is kept as a lower-level constraint and the X-update
subproblem is still solved in closed form (PD-exact-lower-level).

We finally report that we found the introduction of Lagrange multipliers associated
with constraints G(x) ∈ C useful. We instead noticed that multipliers associated with
the constraint X = Y are not helpful. This observation is in line with the work in [43],
where only the constraint X = Y was in practice handled by the penalty approach
and multipliers were reported not to be beneficial. In the experiments described in
the following, only multipliers associated with the original problem constraints have
been employed. The results of the experiment are reported in Tables 6.4, 6.5 and 6.6.

We can observe that the exact versions of the PD approach are the best performing
ones from all perspectives, with the PD-exact-lower-level originally used in [43]
standing out. This is in fact not surprising: in this case the exact method solves
subproblems not only with higher accuracy, but also employing much less time than
using an iterative solver.

Interestingly, however, we observe that the “inaccurate” version of the inexact PD
attains runtimes that are comparable with the exact approaches, with only small
drops in the quality of the retrieved solution. On the other hand, with a slightly
more accurate inexact minimization we are always able to retrieve the best solution
as the exact methods, with a computational effort generally comparable to that of
the ALM.

We can thus deduce that a suitable configuration exists for the inexact PD ap-
proach that provides a good trade-off between solution quality and runtime.

These results are encouraging for all those settings where the exact version of the
Penalty Decomposition approach is not employable by construction.

We then turn to a new class of problems, where matrices are not symmetric
positive semi-definite and the X-update step requires a solver to be carried out.
Specifically, we consider the low-rank based multi-task training [44] of logistic models
[23]. Given a collection of somewhat related binary classification tasks T1, . . . , Tm,
Ti = {(Xi, Yi) | Xi ∈ RNi×n, Yi ∈ {0, 1}Ni}, where Xi represents the data matrix
for each task and Yi the corresponding labels, we can formalize the multitask logistic
regression training problem as

min
W,U,V ∈Rm×n

m∑
t=1

L(Wt;Xt, Yt) + η∥U∥2F s.t. rank(V ) ≤ κ, W = U + V, (6.5)

where the t-th row Wt of W denotes the weights of the logistic model for the t-th
task; each model is defined as the sum of a component independently characterizing
the particular task, which is regularized, and a second component that lies in a linear
subspace shared by all tasks. The stronger is the regularization parameter η, the
higher will be the similarity of the obtained models. By L(Wt;Xt, Yt) we denote the
binary cross entropy loss function of the logistic model for task t, which is a convex
function that, however, cannot be minimized in closed form.
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Table 6.4: Results of experiments on nearest low-rank correlation matrix problem
(P1); for each instance we report the runtime, objective value and number of (inner)
iterations for each considered solver.

Problem (n,κ) Algorithm f_val runtime (s) iter

P1(200, 5)

PD-cg-inaccurate 183.8 19.6 1539
PD-cg-accurate 183.7 104.3 8470
PD-exact 183.7 37.8 9179
PD-exact-lower-level 183.7 20.2 6494
ALM 183.7 124.8 23583

P1(200, 10)

PD-cg-inaccurate 27.7 9.5 597
PD-cg-accurate 27.6 22.11 3277
PD-exact 27.6 22.7 3587
PD-exact-lower-level 27.6 12.4 2606
ALM 27.6 25.8 3705

P1(200, 20)

PD-cg-inaccurate 3.7 8.7 273
PD-cg-accurate 3.5 37.1 1194
PD-exact 3.5 13.7 1332
PD-exact-lower-level 3.5 7.5 1006
ALM 3.5 31.1 2261

P1(500, 5)

PD-cg-inaccurate 3108.0 466.7 5602
PD-cg-accurate 3107.0 2396.3 29689
PD-exact 3107.0 619.4 33654
PD-exact-lower-level 3107.0 339.4 23053
ALM 3107.0 1710.1 47539

P1(500, 10)

PD-cg-inaccurate 748.2 543.5 2132
PD-cg-accurate 748.2 3410.9 12673
PD-exact 748.2 356.2 14299
PD-exact-lower-level 748.2 207.6 9846
ALM 748.2 1351.5 17322

P1(500, 20)

PD-cg-inaccurate 123.7 200.2 811
PD-cg-accurate 123.4 1425.6 5078
PD-exact 123.4 216.0 5787
PD-exact-lower-level 123.4 127.5 4077
ALM 123.4 1201.9 13568
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Table 6.5: Results of experiments on nearest low-rank correlation matrix problem
(P2); for each instance we report the runtime, objective value and number of (inner)
iterations for each considered solver.

Problem (n,κ) Algorithm f_val runtime (s) iter

P2(200, 5)

PD-cg-inaccurate 3701.2 51.3 4312
PD-cg-accurate 3700.8 181.7 15415
PD-exact 3700.8 63.4 16360
PD-exact-lower-level 3700.8 32.6 10724
ALM 3700.8 156.4 22519

P2(200, 10)

PD-cg-inaccurate 1703.7 29.8 2162
PD-cg-accurate 1703.1 100.85 7678
PD-exact 1703.1 45.0 8171
PD-exact-lower-level 1703.1 24.1 5384
ALM 1703.1 136.7 14017

P2(200, 20)

PD-cg-inaccurate 712.2 30.9 1065
PD-cg-accurate 712.0 118.2 3738
PD-exact 712.0 35.0 3969
PD-exact-lower-level 712.0 19.2 2629
ALM 712.0 117.1 6519

P2(500, 5)

PD-cg-inaccurate 24249.5 950.8 11449
PD-cg-accurate 24248.2 3463.7 42892
PD-exact 24248.2 836.4 46711
PD-exact-lower-level 24248.2 447.9 30240
ALM 24248.2 627.6 15633

P2(500, 10)

PD-cg-inaccurate 11752.9 501.5 5754
PD-cg-accurate 11749.1 1845 21508
PD-exact 11749.1 560.9 23576
PD-exact-lower-level 11749.1 308.4 15317
ALM 11749.1 2289.7 44857

P2(500, 20)

PD-cg-inaccurate 5505.0 283.1 2878
PD-cg-accurate 5502.9 1049.6 12854
PD-exact 5502.9 420.1 11932
PD-exact-lower-level 5502.9 238.6 7834
ALM 5502.9 2642.8 360565
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Table 6.6: Results of experiments on nearest low-rank correlation matrix problem
(P3); for each instance we report the runtime, objective value and number of (inner)
iterations for each considered solver.

Problem (n,κ) Algorithm f_val runtime (s) iter

P3(200, 5)

PD-cg-inaccurate 265.1 22.2 1746
PD-cg-accurate 265.0 108.7 9224
PD-exact 265.0 40.3 9934
PD-exact-lower-level 265.0 21.5 6937
ALM 265.0 131.6 21078

P3(200, 10)

PD-cg-inaccurate 56.1 24.2 704
PD-cg-accurate 56.1 103.7 3277
PD-exact 56.1 24.8 3587
PD-exact-lower-level 56.1 13.5 2606
ALM 56.1 82.6 3705

P3(200, 20)

PD-cg-inaccurate 9.1 9.29 305
PD-cg-accurate 8.5 45.4 1474
PD-exact 8.5 16.1 1625
PD-exact-lower-level 8.5 8.9 1196
ALM 8.5 109.9 7875

P3(500, 5)

PD-cg-inaccurate 2871.4 1451.3 5607
PD-cg-accurate 2869.3 7902.8 29897
PD-exact 2869.3 615.6 34110
PD-exact-lower-level 2869.3 360.8 23229
ALM 2869.3 300.57 4128

P3(500, 10)

PD-cg-inaccurate 982.1 219.9 2460
PD-cg-accurate 981.8 1182.7 13657
PD-exact 981.8 371.1 16322
PD-exact-lower-level 981.8 209.9 10463
ALM 981.8 444.7 9343

P3(500, 20)

PD-cg-inaccurate 243.8 102.2 964
PD-cg-accurate 243.7 1049.6 10757
PD-exact 243.7 420.1 11932
PD-exact-lower-level 243.7 238.6 7834
ALM 243.7 2642.8 36056
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We can easily observe that the problem can be solved by Penalty Decomposition,
duplicating variable V . The constraint W = U+V can also be tackled by the penalty
approach. The update step of the original variables W,U, V cannot be carried out in
closed form, thus we need to resort to the inexact version of the PD method.

For the experiments, we used the landmine dataset [41], consisting of 9-dimensional
data points representing radar images from 29 landmine fields/tasks. Each task aims
to classify points as landmine or clutter. There are 14,820 data points in total. Tasks
can approximately be clustered into two classes of ground surface conditions, so we
expect r = 2 to be a reasonable bound for the low-rank component of the solu-
tion. We defined four instances of problem (6.5), corresponding to values of η in
{0.01, 0.1, 0.5, 2}. We examined the behavior of the inexact PD and ALM methods
under different parameters configurations. In particular, we considered the following
settings:

• Penalty Decomposition

– Lagrange multipliers associated with all constraints;
– τ0 = 10−3, ατ = 1.3;
– conjugate gradient (CG) for x-update steps;
– three options for CG termination criteria:

∗ ϵsolv = 0.1, max_itersCG = 5 (pd_inaccurate);
∗ ϵsolv = 0.05, max_itersCG = 8 (pd_mid);
∗ ϵsolv = 0.001, max_itersCG = 20 (pd_accurate);

• ALM

– τ0 = 1, ατ = 1.3;
– two options for spectral gradient parameters:

∗ ϵin = 10−1, m = 1, γmax = 106, σ = 0.05 (alm_fast);
∗ ϵin = 10−3, m = 4, γmax = 109, σ = 5 · 10−4 (alm_accurate).

We also report the results obtained by optimizing each task independently. For all
PD and ALM configurations, we used as starting solution the one retrieved by single
task optimization. Note that both configurations for ALM have lower precision than
the default one reported at the beginning of Section 6; with this particular problem,
we found the default configuration to be remarkably inefficient; however we shall
underline that, in other test cases considered in this paper, these alternative config-
urations had led to convergence issues concerning numerical errors. The results of
the experiment are reported in Figure 6.2. Note that here we are interested in the
optimization process metrics, not in the out-of-sample prediction performance of the
obtained models.

We can observe that different setups for the algorithms allow to obtain different
trade-offs between speed and solution quality. In particular, for the PD method we see
that the trend observed with the correlation matrix problems are confirmed: solving
the x-update subproblem up to lower accuracy allows to save computing time but at
the cost of small yet not negligible sacrifice on the solution quality. A similar and
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Figure 6.2: Runtime/quality trade-off for different set-ups of PD and ALM on low-
rank multitask logistic regression problems. The four problems are obtained from the
landmine dataset for different values of the regularization parameter η and setting
κ = 2.

even stronger trend can be observed for the ALM. Finally, we can observe that PD
appears to be superior to the ALM both in terms of efficiency and effectiveness.

6.3 Disjunctive Programming Problems

In this section, we computationally analyze the performance of the Penalty Decom-
position approach on problems of the form (5.5). The main goal of this section is to
compare the performance of inexact PD with that of the ALM algorithm in a setting
where the projection operation is costly and is in fact responsible for the largest part
of the computational burden: as highlighted in Section 5.4, it amounts to compute
the projection onto each of the convex sets Di.
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For the experiments, we defined the following test problem:

min
x∈Rn

L(x)

s.t. x ∈
N⋃
q=1

{x | Aqx ≤ bq}

n∑
i=1

cij(xi − pij)
4 ≤ tj, j = 1, . . . ,m,

where L denotes the (convex) logistic loss on a randomly generated dataset of 200
examples. We assume Aq ∈ Rs×n and bq ∈ Rs have the same dimensions for q =
1, . . . , N and their coefficients are uniformly drawn from [−1, 1]; the coefficients c are
randomly picked from [0, 1], whereas values for p are from [−0.5, 0.5]. We set tj = 0.1
for all j.

First, we consider the problem with n = 10, s = 12 and m = 1, for values of N
varying in {2, 5, 10, 20, 50, 100}. In Table 6.7 we report the results obtained running
PD (parameters: τ0 = 0.1, ατ = 1.2, ϵin = 0.01, Lagrange multipliers employed) and
the ALM (parameters τ0 = 1, ατ = 1.2 m = 4, σ = 0.01, ϵin = 0.01), together with
reference values obtained with the enumeration approach (subproblems are solved
using the SLSQP method available in scipy), which allows to retrieve the certified
global optimizer. For the projection steps onto sets Di we used gurobi solver.

Table 6.7: Results of experiments on disjoint programming problems, for increasing
number of feasible set components N .

N Algorithm f_val runtime (s)

2
Enumeration + SLSQP 140.58 0.61
PD 140.58 2.10
ALM 140.64 12.02

5
Enumeration + SLSQP 139.40 2.37
PD 139.40 6.92
ALM 139.59 67.22

10
Enumeration + SLSQP 135.82 5.87
PD 135.82 5.87
ALM 135.83 48.13

20
Enumeration + SLSQP 134.94 9.96
PD 134.94 19.41
ALM 134.95 170.31

50
Enumeration + SLSQP 135.08 18.44
PD 135.08 41.66
ALM 135.08 267.95

100
Enumeration + SLSQP 135.69 30.03
PD 135.69 61.26
ALM 135.69 465.91

31



We can observe that PD was always much faster than the ALM; moreover, it
always ended up finding the actual global optimizer; this does not hold true for the
ALM. We remark that we verified that, as expected, the computing time is indeed
entirely dominated by projection steps.

Then, we turn to the experiments on an instance where the number of nonlinear
constraints shared by all components of the feasible set are numerous and dominate
the complexity of solving each subproblem in the enumeration approach. In partic-
ular, we consider the previous problem with N = 50, n = 5, m = 80, s = 7. Here
we set τ0 = 0.1, ατ = 1.5, ϵin = 0.02 for PD and τ0 = 1, ατ = 1.5 m = 4, σ = 0.05,
ϵin = 0.1 for the ALM. The experiment is repeated 20 times for different random
seeds. The results are reported in the form of performance profiles in Figure 6.3.
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Figure 6.3: Performance profiles of runtime attained by PD, ALM and the enumer-
ation strategy (with SLSQP) on 20 disjoint programming problems. When a solver
does not attain the global minimum, the corresponding runtime is considered infinite
when building the profile.

We deduce that Penalty Decomposition can indeed be a good choice in particularly
complicated settings: the global optimizer was always reached, and this result was
obtained in a consistently more efficient way than the brute force approach; the ALM
does not have a comparable appeal in this context, the reason arguably being the
much higher frequency of it resorting to the projection operation.
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7 Conclusions
The current paper considers a penalty decomposition scheme for optimization prob-
lems with geometric constraints. It generalizes existing penalty decomposition schemes
both by taking advantage of a general abstract (and usually complicated) constraint
(as opposed to having only particular instances like cardinality constraints) and by
including further (though supposingly simple) constraints. The idea and the con-
vergence theory of this method is also related to recent augmented Lagrangian tech-
niques, but the decomposition idea turns out to be numerically superior by allowing
more efficient subproblem solvers and using many less projection steps.

In principle, it should be possible to extend the decomposition idea to the class
of (safeguarded) augmented Lagrangian methods. Another, and related, question
is whether one can exploit additional properties of augmented Lagrangian methods
in order to improve the existing convergence theory. For example, augmented La-
grangian techniques have very strong convergence properties in the convex case. The
particular classes of problems discussed in this paper are nonconvex, but the non-
convexity mainly arises from the fact that the abstract set D is nonconvex. Since
we deal with the complicated set D explicitly, so that all iterates are feasible with
respect to this set, a natural question is therefore whether one can prove stronger con-
vergence properties in those situations where the remaining functions and constraints
are convex. This will be part of our future research.
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