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Abstrat. The modeling of reative transport in the subsurfae inludingmineral preipitation-dissolution reations involves a oupling of PDEs, ODEs, and algebrai equations to inequalities.In the geosientists' ommunity, the most frequently used algorithms to solve these kinds of sys-tems apply some kind of trial-and-error strategies. The aim of this artile is to apply a modernand e�ient solution strategy, the semismooth Newton method, to this geosienti� problem,and to investigate its appliability and e�ieny both from a theoretial and a numerial pointof view. In partiular, it turns out that the method is typially quadratially onvergent.Key Words: reative transport, mineral preipitation-dissolution, omplementarity problems,semismooth Newton method, quadrati onvergene



11. IntrodutionThe modeling of reative transport problems in porous media leads to systems ontainingpartial di�erential equations (PDEs) and ordinary di�erential equations (ODEs); the PDEsfor the onentration of speies whih are dissolved in the water (mobile), and the ODEs forthe onentration of speies whih are attahed to the soil matrix (immobile). The immobilespeies an be sorbed speies or minerals. If the reations are su�iently fast, then the as-sumption of loal equilibrium is reasonable. This equilibrium is usually desribed by a set of(nonlinear) algebrai equations (AEs) oupling the PDEs and the ODEs. However, the equi-librium desription only by AEs is no longer valid when reations with minerals are involved.In this situation, the equilibrium desription of the mineral preipitation-dissolution reationshas to take into aount two possibilities for equilibrium: the ase of a saturated �uid, andthe ase of a omplete dissolution of the mineral (see Se. 2). Suh an equilibrium onditionan be expressed by using a ombination of equations and inequalities, having the shape ofa (nonlinear) omplementarity problem. The resulting system onsists of PDEs, ODEs, AEs,and omplementarity onditions (CCs).For the numerial solution, many publiations on reative transport in porous media suggestto enfore a deoupling between transport and reation by applying an operator splitting teh-nique. By this, the reation subproblem is fully loal, i.e., it onsists only of AEs and CCs,while only the transport subproblem ontains the PDEs and ODEs. However, operator splittingeither introdues splitting errors or requires a �xed-point type iteration between transport andreation within eah time step. In the �rst ase, auray onsiderations, and in the seondase, onvergene issues often lead to severe time step restritions for splitting methods.A very popular way to handle the PDE-ODE-AE-CC system in omputational geosienes isthe following [2, 3℄: For the urrent time step, for eah mineral and eah disretization point, anassumption is made (usually based on the previous time step) whether saturation or ompletedissolution will hold. Under this assumption, a Newton iteration is performed. If the resulthas no physial meaning (negative mineral onentration, or supersaturated �uid), then theassumptions are modi�ed in some way and the Newton iteration is repeated, until (hopefully) aphysially meaningful solution is obtained. Besides its heuristi motivation, another drawbakof this proedure is that the CPU time required is signi�antly higher than for reative transportproblems without minerals, sine several Newton iterations are required per time step. The lakof e�ieny beomes even more troublesome if fully impliit methods (avoiding the splittingof transport and reations) are onsidered, sine systems ontaining PDEs have to be solvedagain and again.Other authors from the geosienes ommunity propose to use a formulation as a free bound-ary problem for front traking approahes [13℄. However, this approah laks simpliity assoon as more than one spae dimension is involved and topology hanges of the preipitation-dissolution fronts appear. Another approah is to approximate the equilibrium, i.e., very fastreations, by a kineti desription with large rate oe�ients. Besides the approximative natureof this approah, large rate oe�ients may inrease the sti�ness of the problem to solve.Modern tehniques from the optimization theory for the reative transport problem are on-sidered in [17, 18℄ and in [10℄. In [17, 18℄, an operator splitting is performed, and the now fully



2loal reation problem is replaed by an equivalent onstrained minimization problem for theso-alled Gibbs free energy. Its KKT onditions are solved with an interior-point algorithm.Numerial test runs are performed without any deeper theoretial investigation. Note thatthis proedure leads to additional unknowns, the Lagrange multipliers for the equality andinequality onstraints.In [10, Se. 4℄, to our knowledge for the �rst time, the appliation of a semismooth Newtonmethod to the reative transport mineral preipitation-dissolution problem is arried out. Therethe reative transport problem is takled fully impliit, avoiding any operator splitting. Theauthor onsiders a rather general situation of reative problems inluding equilibrium andkineti reations, where the equilibrium reations may be of the aqueous, the sorption, or themineral preipitation-dissolution type. The implementation of the solution strategy is desribedand some results on the nonsingularity of the Jaobian of the system are given.The following artile propagates and investigates similar solution strategies as in [10℄, but itfousses on those reative systems without kineti reations, and where all the (equilibrium)reations are of aquati and of mineral type, i.e., no sorption is involved. This restrition allowsto prove stronger theoretial results. The struture of the artile is the following: In Se. 2the problem is formulated and its mathematial model is given. Se. 3 ontains an equivalenetransformation (going bak to [11, 12, 10℄) being applied to the PDE-ODE-AE-CC system. Themotivation for this reformulation is a deoupling of some (linear) PDEs, leading to a smallernonlinear system. The resulting disretized system is a mixed omplementarity problem thatan be reformulated as a nonlinear (but nonsmooth) system of equations. The theoretial prop-erties of this nonsmooth system of equations will be investigated in the subsequent setions,f. Se. 4�7. In partiular, it is shown that a nonsmooth (semismooth) Newton-type methodapplied to this system is (usually) loally quadratially onvergent sine the resulting (gener-alized) Jaobian has no inherent singularity properties. Se. 8 gives some numerial results forthe semismooth Newton method applied to a speial instane of our problem, and we lose withsome �nal remarks in Se. 9. 2. Problem FormulationThis setion gives a preise formulation of the mathematial model for the appliation thatwas outlined in the introdution. This formulation will be the basis for our subsequent theo-retial and numerial investigations.To this end, let us onsider the onentrations of I mobile speies c = (c1, c2, . . . , cI)
T . Thesespeies are dissolved in the groundwater. Their onentrations are time- and spae-dependent.They are onveted by a given Dary �ow �eld q and are subjet to dispersion. The onvetion-di�usion operator for these speies is given by

Lici = −∇ · (D∇ci − qci) , i = 1, . . . , I,with dispersion tensor D = D(q) whih depends on the �ow �eld q. Clearly, this operator
L = (L1, . . . , LI)

T is linear and ats in the same way on all mobile speies, i.e. L1 = · · · = LI .The onstant θ ∈ (0, 1) denotes the fration of the mobile �uid-phase volume. With c̄ =

(c̄I+1, . . . , c̄I+Ī)
T we denote the onentrations of the Ī mineral speies. These onentrations



3are also variable in time and spae. They are attahed to the soil matrix and therefore neithersubjet to onvetion nor di�usion. But they are like the mobile speies involved in hemialreations with other mobile or mineral speies. In this paper we restrit ourselves to equilibriumreations, i.e. reations that are atually in the ondition of equilibrium or equations whih aresu�iently fast to be approximately onsidered to be in equilibrium. R = (R1, . . . , RJ) denotesthe vetor of reation rates that are neessary to keep the hemial system in equilibrium.Together with c and c̄ they form the unknowns of the system to be onsidered here.The I + Ī mass balane equations are
∂

∂t
θc + Lc = S1R ,

∂

∂t
c̄ = S2R ,(1)given on the domain [0, T ]×Ω ⊂ R

2 or R
3 together with given initial and boundary onditions.The matrix (sij) = S =

(
S1

S2

)

∈ R
(I+Ī)×J is the matrix of stoihiometri oe�ients, where

J is the number of hemial reations. If we have, for example, an equilibrium reation
X1 + 2X2 ←→ X3we shift all speies to the right side

0←→ −X1 − 2X2 + X3and get a olumn of matrix S with entries −1,−2, 1 in the orresponding positions. It is wellknown that any linear dependene of the hemial reations (i.e. the olumns of S) indiates aredundany of hemial reations [1℄. Hene, without loss of generality, we an assume that Shas full olumn rank,(2) rank (S) = J .Additionally, we demand that the olumns of S1 are linearly independent(3) rank (S1) = J .Furthermore, we assume that eah mineral is partiipating in one and only one mineral reation,and that in eah mineral reation, exatly one mineral is involved. Hene, in this paper, amineral reation is a reation with one mineral and one or more mobile speies involved. Withmobile reations we indiate reations in whih only mobile speies partiipate. By Jmob wedenote the number of mobile reations and with Jmin the number of mineral reations. Itfollows that Jmin = Ī. Sine in our model we have only mineral or mobile reations, it holds
J = Jmob + Jmin. The stoihiometri matrix then reads

S =

(
S1

S2

)

=

(
S1

mob S1
min

0 −I

)

, with S1
mob ∈ R

I×Jmob, S1
min ∈ R

I×Jmin ,where, for simpliity of notation, we have replaed the diagonal matrix representing the mineralpartiipation in the mineral reations by −I, the negative identity matrix. Therefore, reations



4
1, . . . , Jmob are mobile and reations Jmob +1, . . . , J are mineral, beause the olumns of S referto hemial reations.The equilibrium onditions for the reations not involving minerals are modeled by algebraiequations(4) I∏

i=1

c
si,j

i − kj = 0 (j = 1, . . . , Jmob) ,where kj are given onstants. They hold in eah point of spae and time. Sine we expet thesolutions to be positive, equation (4) an equivalently be written as
Qj (c) :=

I∑

i=1

si,j · ln ci − ln kj = 0 (j = 1, . . . , Jmob) .In matrix notation, the vetor Qmob = (Q1, Q2, . . . , QJmob
) then beomes

Qmob (c) =
(
S1

mob

)T
ln c−K1 ,where K1 = (ln k1, . . . , ln kJmob

)T is the vetor of equilibrium onstants in logarithmi form and
ln c is a vetor where the logarithm is applied separately to every omponent of the vetor c.For the mineral equilibrium reations, we have the omplementary onditions

Ej (c) · c̄j = 0 ∧ c̄j ≥ 0 ∧ Ej (c) ≥ 0 (j = Jmob + 1, . . . , J) ,where Ej (c) := ln kj −
∑I

i=1 si,j · ln ci. The ase Ej(c) = 0, c̄j ≥ 0 orresponds to a saturationof the �uid with respet to this mineral reation, and the ase Ej(c) ≥ 0, c̄j = 0 orrespondsto the total dissolution of the mineral and an undersaturation of the �uid. Again we an write
E = (EJmob+1, . . . , EJ)T in matrix notation as

E (c) = K2 −
(
S1

min

)T
ln cwith K2 = (ln kJmob+1, . . . , ln kJ)T . The onstant 1/K2 (omponentwise) is the so-alled solu-bility produt.We deompose the reation vetor R into

R =

(
Rmob

Rmin

)



5with Rmob and Rmin being of size Jmob and Jmin, respetively. Utilizing the struture of S, thefull system reads
∂

∂t
θc + Lc = S1

mobRmob + S1
minRmin = S1R ,(5)

∂

∂t
c̄ = −Rmin ,(6)

Ej (c) · c̄j = 0 (j = Jmob + 1, . . . , J) ,(7)
c̄j ≥ 0 (j = Jmob + 1, . . . , J) ,(8)

Ej (c) ≥ 0 (j = Jmob + 1, . . . , J) ,(9)
Qmob (c) = 0 ,(10)for the I + Ī + J unknowns c, c̄ and R. Note that this is a di�erential-algebrai system ofordinary and partial di�erential equations oupled with omplementary onditions arising fromthe mineral equilibrium reations.3. Deoupling and reformulation of the omplementary onditionsThe aim of this setion is to redue the size of the overall system (5)�(10) by using suitabledeouplings and reformulations. Sine these tehniques are already known from [11, 12℄ (butstritly needed for our subsequent analysis), we will keep this setion as short as possible.First, we apply the deoupling tehnique proposed in [11, 12℄ to the PDE-ODE system (5)�(6). This will lead to a deoupling of some linear PDEs. The remaining PDE-system willthen be signi�antly smaller than the original PDE-system. To this end, we de�ne S⊥

1 as amatrix onsisting of a maximum set of linearly independent olumns that are orthogonal to eaholumn of S1, i.e. (S1)
T S⊥

1 = 0. Reall that the olumns of S1 were assumed to be linearlyindependent, f. (3). Hene the pseudo-inverses of S1 and S⊥
1 are given by (ST

1 S1

)−1
ST

1 and
( (

S⊥
1

)T
S⊥

1

)−1 (
S⊥

1

)T , respetively. Multiplying (5) with these two pseudo-inverses, we obtain
((

S⊥
1

)T
S⊥

1

)−1 (
S⊥

1

)T
(

∂

∂t
θc + Lc

)

= 0 ,(11)
(
ST

1 S1

)−1
ST

1

(
∂

∂t
θc + Lc

)

= R ,(12)
∂

∂t
c̄ = −Rmin .(13)We now substitute(14) η :=

((
S⊥

1

)T
S⊥

1

)−1 (
S⊥

1

)T
c, ξ :=

(
ST

1 S1

)−1
ST

1 c,and partition the vetor ξ into
ξ = (ξmob, ξmin)



6of size Jmob, Jmin. Then splitting equation (12) into two parts and adding the third blok tothe seond part, we get
∂

∂t
θη + Lη = 0 ,

∂

∂t
θξmob + Lξmob = Rmob ,

∂

∂t
(θξmin + c̄) + Lξmin = 0 ,

∂

∂t
c̄ = −Rmin .We may onsider the seond and fourth equations as a de�nition for Rmin resp. Rmob. Sinewe are not diretly interested in R, we drop both equations (but an use them to ompute Ra posteriori).It is well known that omplementary onditions an be expressed equivalently via NCP-funtions, also alled C-funtions, f. [6, 7℄. Let ϕ (a, b) = min {a, b} be the minimum funtion.This funtion is an NCP-funtion, i.e. it has the de�ning property that

ϕ (a, b) = 0 ⇐⇒ a ≥ 0 , b ≥ 0, a · b = 0 .Using this minimum funtion, we an write the omplementary onditions (7)�(9) as
ϕ (Ej (c) , c̄j) = 0 (j = 1, . . . , Jmin) .In vetor notation, this beomes(15) ϕ (E (c) , c̄) = 0 ,where ϕ is applied to eah omponent of E (c) and c̄.The resulting system now reads

∂

∂t
θη + Lη = 0 ,(16)

∂

∂t
(θξmin + c̄) + Lξmin = 0 ,(17)

−ϕ (E (c) , c̄) = 0 ,(18)
Qmob (c) = 0 ,(19)where c an be represented as(20) c = c (ξmin, ξmob, η) = S1

min · ξmin + S1
mob · ξmob + S⊥

1 η,f. (14). Note that (16) is now linear with respet to η and it is deoupled from the otherequations (η is not ontained in the other equations). The remaining nonlinearly oupledsystem (17)�(19) is redued in size from I + J + Jmin rows to I + Jmin rows ompared to theoriginal system (5)�(10). Together with the size redution of J rows, the J unknowns R ouldbe dropped. They an be omputed a posteriori. We now disretize the system in spae andtime. To keep the notation simple, we suppress subsripts indiating the disretization (exeptwe denote Lh as the disretization of L). For the sake of simpliity, we assume the impliit



7Euler time stepping sheme. We further mention that equation (16) in its disretized versionan be solved for η diretly (say, by a linear system solver like GMRES). Hene η is not viewedas a variable any longer. We therefore write c = c (ξmin, ξmob) for the disretized funtion c.The remaining disrete system in the variables (ξmin, ξmob, c̄) then reads
G1 := θξmin + c̄ + τLhξmin − θξold

min − c̄old = 0 ,(21)
G2 := −ϕ (E (c (ξmin, ξmob)) , c̄) = 0 ,(22)
G3 := Qmob (c (ξmin, ξmob)) = 0 .(23)The supersript 'old' indiates the previous time-step. The time-step size is τ . We assume thedomain Ω has been disretized into the grid set Ωh with |Ωh| grid points. Then ξmin, ξmob, c̄ arevetors with Jmin · |Ωh| , Jmob · |Ωh| , Jmin · |Ωh| omponents. These vetors are onatenations ofthe funtion values in every node of the grid. Lh is a linear mapping whih is the disretizationof the PDE operator L. In (22) and (23), the funtions Qmob, ϕ, E, c are to be applied to (thedisretizations of) ξmin, ξmob, c̄ in every node separately. For example, a more detailed way torepresent c (ξmin, ξmob) is

c (ξmin, ξmob) =

[

c
(
ξ1
min, ξ

1
mob

)T
, c
(
ξ2
min, ξ

2
mob

)T
, . . . , c

(

ξ
|Ωh|
min , ξ

|Ωh|
mob

)T
]T

,where ξi
min, ξ

i
mob are our variables in one grid point. For the sake of simpliity, we de�ne theabbreviations

Ẽ (ξmin, ξmob) := E (c (ξmin, ξmob)) ,

Q̃mob (ξmin, ξmob) := Qmob (c (ξmin, ξmob)) .Let
G =





G1

G2

G3



 .Then we have to solve the nonlinear system of equations
G (ξmin, ξmob, c̄) = 0 .Note that this is a nonsmooth system due to the de�nition of G2 via the minimum funtion.4. The Generalized Jaobian and Semismooth FuntionsIn this setion, we will shortly review the de�nition for the generalized Jaobian and introduean interesting result onerning the vetor �eld G. More detailed statements and examples anbe found in [4, 6, 7, 14, 15, 16℄.De�nition 1. Let F : R

n −→ R
m be loally Lipshitz ontinuous and w ∈ R

n be arbitrarilygiven. Let DF ⊂ R
n be the set of di�erentiable points of F . Then the set

∂BF (w) :=
{
H ∈ R

m×n | ∃ {wk} ⊆ DF , wk −→ w and JF (wk) −→ H
}is alled the B-subdi�erential of F in w, where JF is the Jaobian of F . The onvex hull

∂F (w) := conv (∂BF (w))



8is Clarke's generalized Jaobian of F in w. Finally, the C-subdi�erential is de�ned by
∂CF (w) :=

(

∂F1 (w)T × ∂F2 (w)T × · · · × ∂Fm (w)T
)T

.If m = 1 then ∂F (w) is also alled the generalized gradient of F . Note that if F is ontinuouslydi�erentiable in a neighborhood of w, both sets ∂F (w) and ∂BF (w) ontain the Jaobian of
F as their only element.Note that ∂F (w) ⊆ ∂CF (w) always holds . The C-subdi�erential of F an be omputedvery easily, whih is often not the ase for the generalized Jaobian of F . Sine conv (A× B) =
conv (A) × conv (B) for any sets A, B, it follows that the C-subdi�erential an also be repre-sented as(24) ∂CF (w) = conv

((

∂BF1 (w)T × ∂BF2 (w)T × · · · × ∂BFm (w)T
)T
)

.Now let G be the mapping from the previous hapter. Eah part Gi (i = 1, 2, 3) of G is itself amultidimensional mapping. With Gi,j we denote the omponents of the mapping Gi(i = 1, 2, 3).Lemma 1. Let G be the nonlinear mapping that was introdued in (21)�(23) and let p := |Ωh|,say Ωh = {x1, x2, . . . , xp}. Furthermore, let w = (ξmin, ξmob, c̄) be an arbitrary element of
R

Jmin·p × R
Jmob·p × R

Jmin·p with omponents ξmin =
(

ξmin (x1)
T , ξmin (x2)

T , . . . , ξmin (xp)
T
)Tand ξmob, c̄ de�ned in a similar way. Suppose that c (ξmin, ξmob) > 0 omponentwise. Then thefollowing statements hold:(1) The B-subdi�erential of G an be written as the ross produt

∂BG (w) = ∂BG1 (w)× ∂BG2 (w)× ∂BG3 (w)with ∂BG1 (w) = {JG1(w)} and ∂BG3 (w) = {JG3(w)}, where JG1 and JG3 are theJaobians of G1 and G3, respetively.(2) The B-subdi�erential of G2 an be broken down into
∂BG2 (w) = ∂BG2 (w1)× ∂BG2 (w2)× . . .× ∂BG2 (wp) ,where wi = (ξmin (xi) , ξmob (xi) , c̄ (xi)).(3) Let xi ∈ Ωh, a = (ξmin (xi) , ξmob (xi)) and b = c̄ (xi). Then we have

∂BG2 (wi) = −∂Bϕ
(

Ẽ1(a), b1

)

×−∂Bϕ
(

Ẽ2(a), b2

)

× . . .×−∂Bϕ
(

ẼĪ(a), bĪ

)

.(4) Let xi, a and b be as before. Then
∂Bϕ

(

Ẽj(a), bj

)

=







{(
∂Ẽj(a)

∂ξmin
,

∂Ẽj(a)

∂ξmob
, 0
)

,
(
0, 0, eT

l

)}

, if Ẽj(a) = bj ,
{(

0, 0, eT
l

)}
, if Ẽj(a) > bj ,{(

∂Ẽj(a)

∂ξmin
,

∂Ẽj(a)

∂ξmob
, 0
)}

, if Ẽj(a) < bj ,where el is a unit vetor, with all omponents vanishing and omponent l = i · Jmin + jbeing one.



9Proof. It is easy to see that G is loally Lipshitz ontinuous, sine G1, G3 and Ẽ are ontinu-ously di�erentiable and the minimum funtion ϕ is (globally) Lipshitz ontinuous.(1) This statement follows diretly from the observation that the two blok omponents G1 and
G3 are ontinuously di�erentiable, so that ∂BG1(w) = {JG1(w)} and ∂BG3(w) = {JG3(w)}.(2+3) These two statements are diret onsequenes of the de�nition of the orresponding B-subdi�erentials, taking into aount that the seond argument c̄ of the NCP-funtion ϕ anvary independently in every omponent. Note that statement (2) expresses the B-subdi�erential
∂BG2(w) as a Cartesian produt of the B-subdi�erentials at eah of the p vetors wi (whihitself is still a vetor in R

Jmin for all i = 1, . . . , p), whereas statement (3) gives the struture ofthe B-subdi�erentials for eah of these blok omponents.(4) The two ases Ẽj(a) > bj and Ẽj(a) < bj are obvious sine ϕ is ontinuously di�erentiablein these ases, so that the B-subdi�erential redues to the existing gradient whih an bealulated diretly from (22). The remaining ase Ẽj(a) = bj an be veri�ed by hoosingsuitable sequenes {bk} onverging to b. �Note the fat that G1 and G3 are ontinuously di�erentiable means that their B-subdi�erentialequals the ross produt of the B-subdi�erential of their omponents. Therefore, an immediateonsequene of this lemma and (24) is the followingCorollary 1. Let G be the nonlinear mapping that was introdued in (21)�(23), and let w =

(ξmin, ξmob, c̄) be an arbitrary element of R
Jmin·|Ωh| ×R

Jmob·|Ωh| ×R
Jmin·|Ωh|
+ . Then it holds

∂G(w) = ∂CG(w) .5. Newton's Method and Ative Set StrategyHere we desribe our Newton-type method applied to the nonlinear system of equations(21)�(23) and its relation to an ative-set strategy. Some parts of this setion is taken fromthe Habilitation Thesis [10℄, whereas the relationship between our Newton-type method andan ative set strategy is, in priniple, known [8, 9℄, although it has not been disussed withinour ontext. The formulas to be derived in this setion will, in partiular, be needed in thesubsequent setions.The linearization of (21)�(23) via Newton's method leads to the linear system(25) H





∆ξmin

∆ξmob

∆c̄



 = −





G1

G2

G3



 ,with H ∈ ∂BG(w). Reall that G is not di�erentiable everywhere due to the nondi�erentiabilityof the minimum funtion ϕ. In the points where G is (ontinuously) di�erentiable, H oinideswith the Jaobian of G and the formula above is equal to the formula of the lassial Newton



10method. For the non-di�erentiable ase, we have replaed the Jaobian in a suitable way fol-lowing the theory of the semismooth Newton method from [15℄, see also [6, 7, 16, 14℄ for relatedmaterial. In the following, we will onstrut one partiular element of the B-subdi�erential of
G at w. The onstrution also shows how the other elements from the B-subdi�erential an beobtained. In the di�erentiable ase, our element is simply the Jaobian of G at w.To this end, we introdue an ative set strategy. As already mentioned, the vetors ξmin and
c̄ eah ontain |Ωh| · Jmin omponents (and the vetor ξmob ontains |Ωh| · Jmob omponents),where |Ωh| is the number of grid points. We partition the set {1, . . . , Jmin} × Ωh into

A =
{

(i, x) ∈ {1, . . . , Jmin} × Ωh | Ẽi (ξmin (x) , ξmob (x)) > c̄i (x)
}

,(26)
I =

{

(i, x) ∈ {1, . . . , Jmin} × Ωh | Ẽi (ξmin (x) , ξmob (x)) ≤ c̄i (x)
}

.(27)Note that this partition is somewhat arti�ial. Alternatively, we ould have de�ned the sets
A and I in a di�erent way by putting all index pairs satisfying Ẽi (ξmin (x) , ξmob (x)) > c̄i (x)as well as an arbitrary subset of the index pairs satisfying Ẽi (ξmin (x) , ξmob (x)) = c̄i (x) intothe set A, whereas the remaining index pairs belong to the index set I. We will ome bak tothis point at a later stage. For the moment, we use the two partiular index sets A and I asde�ned in our previous formula. In ontrast to the more general ase, this simpli�es to someextent our notation; moreover, it orresponds to our atual implementation of the nonsmoothNewton-type method.For reasons that will beome lear soon, the set A will be alled the set of ative indies,whereas its omplement I will be alled the set of inative indies. We emphasize that thispartitioning into ative and inative indies has to be omputed in eah Newton step, sine
ξmin, ξmob and c̄ hange in eah Newton iteration. Restrited to one speies i, we an de�ne theset of ative and inative indies as

Ai = {x ∈ Ωh | (i, x) ∈ A} ,

Ii = {x ∈ Ωh | (i, x) ∈ I}for i = 1, . . . , Jmin. With these sets, we have
ϕ
(

Ẽi (ξmin (x) , ξmob (x)) , c̄i (x)
)

=

{

c̄i (x) , for x ∈ Ai ,

Ẽi (ξmin (x) , ξmob (x)) , forx ∈ Ii .
(28)For an index (i, x) ∈ I with Ẽi (ξmin(x), ξmob(x)) = c̄i(x), the funtion ϕ

(

Ẽi (·, ·) , ·
) is notdi�erentiable. As a replaement for the Jaobian, we take an element of its B-subdi�erential,namely

(

∂Ẽi (ξmin (x) , ξmob (x))

∂ξmin

,
∂Ẽi (ξmin (x) , ξmob (x))

∂ξmob

, 0

)(whih is onsistent with the previous de�nition of the ative and inative index sets, f. (28)).For the indies in A, we always have the di�erentiable ase due to the de�nition of this indexset. Due to Lemma 1, it follows that this partiular element belongs to the B-subdi�erential



11of G at w. In our subsequent analysis, we will mainly work with this partiular element from
∂BG(w) and therefore all it J . In partiular, we onsider the nonsmooth Newton iteration in(25) using this partiular element J rather than an arbitrary element H ∈ ∂BG(w).We now want to exploit the speial struture of the partiular matrix J in order to deomposethe linear system (25). To this end, we reorder the entries of ξmin and c̄ in the following way

ξmin =

(
ξAmin

ξImin

)

, c̄ =

(
c̄A

c̄I

)

.We apply the same reordering to our funtion G. Additionally, we reorder the rows of G1 and
G2. Altogether, this orresponds to reordering the rows and olumns of J . We perform thefollowing deompositions:

G1 =

(
GA

1

GI
1

)

, Lh =

(
LA

h

LI
h

)

, Ẽ =

(
ẼA

ẼI

)

, S1
min =

(
S1

min,A | S
1
min,I

)
,et. Similar to the partition of ξmin, we split the disrete di�erential operator Lh in

LA
h ξmin := LA,A

h ξAmin + LA,I
h ξImin ,

LI
hξmin := LI,A

h ξAmin + LI,I
h ξImin .With this restruturing, the linear system (25) reads(29) J









∆ξAmin

∆ξImin

∆ξmob

∆c̄A

∆c̄I









= −









GA
1

GI
1

−c̄A

−ẼI

G3









,with
(30) J =












(

θI|A| + τLA,A
h

)

τLA,I
h 0 I|A| 0

τLI,A
h

(

θI|I| + τLI,I
h

)

0 0 I|I|

0 0 0 −I|A| 0

− ∂ẼI

∂ξAmin

− ∂ẼI

∂ξImin

− ∂ẼI

∂ξmob
0 0

∂Q̃mob

∂ξAmin

∂Q̃mob

∂ξImin

∂Q̃mob

∂ξmob
0 0












.

From the third set of equations, we immediately obtain(31) −∆c̄A = c̄A .There is no need to ompute ∆c̄A, beause of (31) we an simply set the new Newton iterateas
c̄A,new := 0



12(this explains why A is alled the ative set). Furthermore, the unknowns ∆c̄I only appear inthe seond set of equations. These equations an be solved for ∆c̄I :
∆c̄I = −GI

1 − τLI,A
h ·∆ξAmin −

(

θI|I| + τLI,I
h

)

·∆ξImin .By these equations, ∆c̄I an be omputed a posteriori. After these two redutions, the resultingsystem reads
J̃





∆ξAmin

∆ξImin

∆ξmob



 = −





GA
1 − c̄A

− ẼI

G3



(32)with(33) J̃ :=







(

θI|A| + τLA,A
h

)

τLA,I
h 0

− ∂ẼI

∂ξAmin

− ∂ẼI

∂ξImin

− ∂ẼI

∂ξmob

∂Q̃mob

∂ξAmin

∂Q̃mob

∂ξImin

∂Q̃mob

∂ξmob







.This linear system is smaller than the original linear system (29), and it is solvable if and only if(29) is solvable. More preisely, the absolute values of the determinants of J and J̃ oinide. Tosee this, note that, by using elementary row and olumn additions as well as row interhanges,we an transform J into
J1 :=











0 0 0 0 I|I|
0 0 0 −I|A| 0

(

θI|A| + τLA,A
h

)

τLA,I
h 0 0 0

− ∂ẼI

∂ξAmin

− ∂ẼI

∂ξImin

− ∂ẼI

∂ξmob
0 0

∂Q̃mob

∂ξAmin

∂Q̃mob

∂ξImin

∂Q̃mob

∂ξmob
0 0











.Of ourse, J1 is nonsingular if and only if J is nonsingular, and their determinants are the sameexept for possibly the fator −1. The same holds for J1 and J̃ , beause J1 results from J̃ byerasing the �rst rows and last olumns, whih belong to the blok with the unity matrix andthe negative unity matrix. Altogether, it follows that(34) det J = ± det J̃ .In the following setion, we will show that this determinant is nonzero.6. Convergene of the Newton-type AlgorithmNow we want to study the nonsingularity of the matrix J̃ from the previous setion (atthe arbitrary point w onsidered so far whih is not neessarily assumed to be a solution ofour problem). The nonsingularity of the matrix J and therefore of J̃ was �rst shown in [10,Setion 4.4.5℄ even in a more general setting. The proof given here, however, is di�erent and thestatement is stronger. The nonsingularity of this matrix is essential both for the solvability ofthe linear system (32) and for the loal rate of onvergene of our nonsmooth Newton method.



13First, let us examine the submatrix
B :=




−∂ẼI(ξmin,ξmob)

∂ξImin

−∂ẼI(ξmin,ξmob)
∂ξmob

∂Q̃mob(ξmin,ξmob)

∂ξImin

∂Q̃mob(ξmin,ξmob)
∂ξmob



of the matrix J . The nonsingularity of this matrix is shown even more generally in [10, Setion4.4.5℄. Note that every entry of B is a blok diagonal matrix. For example,
∂Q̃mob (ξmin, ξmob)

∂ξImin

= diag

(

∂Q̃mob (ξmin (x1) , ξmob (x1))

∂ξImin

, . . . ,
∂Q̃mob (ξmin (xp) , ξmob (xp))

∂ξImin

)

,with p = |Ωh|. By olumn and row interhanges, we an transform B into a blok diagonalmatrix, further denoted by C, so that every blok orresponds to one grid point x ∈ Ωh andhas the form
B̃ =




−∂ẼI(ξmin(x),ξmob(x))

∂ξImin

−∂ẼI(ξmin(x),ξmob(x))
∂ξmob

∂Q̃mob(ξmin(x),ξmob(x))

∂ξImin

∂Q̃mob(ξmin(x),ξmob(x))
∂ξmob



 .With the de�nitions from Setion 2 and the representation (20) of c, we an easily see that
B̃ =

(
S1

min,I | S
1
mob

)T
Λc

(
S1

min,I | S
1
mob

)holds, where Λc = diag
(

1
c1

, . . . , 1
cI

). Sine we postulated that all ci should be positive onthe whole domain Ωh, the blok B̃ is always symmetri positive de�nite in view of our rankondition (3). Therefore, C is symmetri positive de�nite. In partiular, C is nonsingular.Sine olumn and row interhanges do not hange the rank of a matrix, it follows that B is alsononsingular. To prove the nonsingularity of the global matrix J̃ we deviate from the strategyused in [10℄.The olumns of B form a basis of its olumn spae. Consequently, there exist unique matries
D1 and D2 suh that




−∂ẼI(ξmin,ξmob)

∂ξImin

∂Q̃mob(ξmin,ξmob)

∂ξImin



D1 +

(

−∂ẼI(ξmin,ξmob)
∂ξmob

∂Q̃mob(ξmin,ξmob)
∂ξmob

)

D2 = −




−∂ẼI(ξmin,ξmob)

∂ξAmin

∂Q̃mob(ξmin,ξmob)

∂ξAmin



or, equivalently,
B ·

(
D1

D2

)

= −




−∂ẼI(ξmin,ξmob)

∂ξAmin

∂Q̃mob(ξmin,ξmob)

∂ξAmin



 .Next we post-multiply J̃ in (33) with the blok matrix
X :=





I 0 0
D1 I 0
D2 0 I







14from the right hand side and obtain
J̃1 := J̃ ·X =







θI|A| + τLA,A
h + τLA,I

h ·D1 τLA,I
h 0

0 − ∂ẼI(ξmin,ξmob)

∂ξImin

−∂ẼI(ξmin,ξmob)
∂ξmob

0 ∂Q̃mob(ξmin,ξmob)

∂ξImin

∂Q̃mob(ξmin,ξmob)
∂ξmob







.Sine the determinant of X is obviously 1, it follows that
det J̃ = det J̃1 .On the other hand, the determinant of J̃1 is given by

det
(
J̃1

)
= det

(

θI|A| + τLA,A
h + τLA,I

h ·D1

)

· det B.Therefore, in view of the previous disussion, J̃1 is nonsingular if and only if H := θI|A| +

τLA,A
h + τLA,I

h ·D1 is nonsingular.Now we apply Lemma 2 from the appendix to the matrix H and obtain
det H =

∑

β

det θIβ,β · det
(

τLA,A
h + τLA,I

h ·D1

)

β̄,β̄
,where β ⊂ {1, . . . , |A|} and β̄ := {1, . . . , |A|}\β. The matries θIβ,β and (τLA,A

h + τLA,I
h ·D1

)

β̄,β̄are submatries of θI|A| resp. (τLA,A
h + τLA,I

h ·D1

). Sine the determinant of a 0 × 0 matrixis de�ned as 1, we get
det H =

∑

β

θ|β| · det
(

τLA,A
h + τLA,I

h ·D1

)

β̄,β̄

= θ|A| +
∑

|β|<|A|

θ|β| · τ |β̄| det
(

LA,A
h + LA,I

h ·D1

)

β̄,β̄
.For the next theorem, we assume that Lh is an arbitrary disretization of the PDE operator L.This disretization might depend on h but not on τ . Furthermore, we assume that the spatialstep size h is given and �xed. Then our theorem states the dependene of the nonsingularityof J on the time step size τ .Theorem 1. For su�iently small time steps τ , the system matrix J is nonsingular. Further-more, there are at most Jmin · |Ωh| time steps τ suh that J is singular.Proof. Note that the determinant of H is a polynomial in τ . The degree of this polynomial is

|A|, where |A| ≤ Jmin · |Ωh| always holds by de�nition of the ative set A. So this polynomialhas a maximum degree of Jmin · |Ωh|. It is not the zero polynomial sine it has θ|A| as onstantterm. So Jmin ·|Ωh| is also the maximum number of its roots. Hene either all roots are omplex,or there exists a smallest positive root whih is our smallest time step. Sine det B 6= 0 alwaysholds, and sine we have det J̃1 = det J̃ = ± det J aording to (34), the statement follows. �



15Additionally, we now assume that our PDE operator Lh emerged from a di�erene sheme of�rst or seond order. In fat, the subsequent disussion would hold for any PDE operatorthat ontains 1
h
in every nonvanishing entry. The variable h is the spatial grid width of ourdisretization. Hene every entry of Lh that does not vanish ontains the fator 1

h
. We thereforeonlude that every non-vanishing entry of LA,A

h +LA,I
h ·D1 ontains the fator 1

h
(some entriesmay ontain 1

h2 ). Hene, for every index subset δ, there exists a matrix Lδ suh that
(

LA,A
h + LA,I

h ·D1

)

δ,δ
=

1

h
· Lδholds.In ontrast to the previous theorem, we study in our next result the orrelation of thenonsingularity of J for variable spae step size h, while we assume that the time step size τ isgiven and �xed.Theorem 2. Let the PDE operator Lh result from a di�erene sheme of �rst or seond order.Then the system matrix J is nonsingular for all su�iently small spae steps h. Furthermore,there are at most 2 · Jmin · |Ωh| spae steps h suh that J is singular.Proof. Every non-vanishing entry of Lh is a polynomial in 1
h
of �rst or seond order. The sameholds for LA,A

h + LA,I
h ·D1 and all its submatries. With the Leibniz formula, we onlude that

det
(

LA,A
h + LA,I

h ·D1

)

β̄,β̄
is a polynomial in 1

h
of maximal degree 2 · |A| with a zero onstantterm. Therefore, det H is always a polynomial in 1

h
of degree at most 2 · Jmin · |Ωh|. Again, θ|A|is the onstant term of this polynomial, hene it is not the zero polynomial. Therefore it hasat most 2 · Jmin · |Ωh| roots.Let z∞ be the largest real root of this polynomial. Then there exists a orresponding smallestpositive spae step h0 with z∞ = 1

h0
. So det H 6= 0 holds for all h ∈ (0, h0). Sine det B 6=

0 always holds, and beause det J̃1 = det J̃ = ± det J , aording to (34), we have provedeverything. �We now generalize the previous two theorems slightly.Corollary 2. Let w∗ := (ξ∗min, ξ
∗
mob, c̄

∗) ∈ R
Jmin·|Ωh| × R

Jmob·|Ωh| × R
Jmin·|Ωh|
+ be a grid vetor.Then the following statements hold:(1) Let h be given. Then all H ∈ ∂BG (w∗) are nonsingular for all su�iently small timesteps τ . Furthermore, there is only a �nite number of time steps τ suh that at leastone element in ∂BG (w∗) is singular.(2) Let τ be given and let Lh be as in Theorem 2. Then all H ∈ ∂BG (w∗) are nonsingularfor all su�iently small spae steps h. Furthermore, there are only a �nite number ofspae steps h suh that at least one element in ∂BG (w∗) is singular.Proof. So far, we have shown the two statements for the partiular element J from the B-subdi�erential. However, as outlined after the de�nitions of the ative and inative index sets

A and I in (26) and (27), respetively, the other elements from ∂BG(w∗) an be obtained bya minor hange of these de�nitions where, basially, some of the index pairs from I are moved



16to the index set A. The nonsingularity of the orresponding element an then be shown inessentially the same way as we proved the nonsingularity of the partiular element J . Henethe desired statements follow from Theorems 1 and 2, respetively, taking into aount thatthe number of matries in ∂BG (w∗) is �nite, f. Lemma 1. �Note that all the previous nonsingularity results hold at an arbitrary point w (or w∗). Heneall iterations of our Newton-type method are (not only loally) well-de�ned. But it should bementioned that the minimal time step size in two di�erent grid points may di�er. So this valueould derease onstantly during a Newton iteration.We next give an exat statement of our Newton-type method for the solution of the nonlinearsystem of equations from (29).Algorithm 1. (Nonsmooth Newton Method)(S.0) Let w0 ∈ R
Jmin·|Ωh| ×R

Jmob·|Ωh| ×R
Jmin·|Ωh|, and set k := 0.(S.1) If G

(
wk
)

= 0, stop.(S.2) Let Jk ∈ ∂BG
(
wk
) be the element de�ned in Setion 5. Find a solution dk of the linearsystem

Jkd = −G
(
wk
)

.(S.3) Set wk+1 := wk + dk , k ← k + 1, and go to (S.1).The following is the main loal onvergene result for this Newton-type method.Theorem 3. Let w∗ := (ξ∗min, ξ
∗
mob, c̄

∗) ∈ R
Jmin·|Ωh| × R

Jmob·|Ωh| × R
Jmin·|Ωh| be a grid vetorsuh that w∗ is a solution of the nonlinear system G (w) = 0 and H is nonsingular for all

H ∈ ∂BG (w∗). Then there exists an ǫ > 0 suh that for every starting point w0 ∈ Bǫ (w∗), thefollowing assertions hold:(1) The Newton-type iteration de�ned in Algorithm 1 is well-de�ned and produes a sequene
{
wk
} that onverges to w∗.(2) The rate of onvergene is quadrati.Proof. The assertion follows from [15℄ as soon as we have shown that the equation operator Gis a strongly semismooth funtion, see [6, 7, 16, 14℄ and referenes therein for further details on(strongly) semismooth funtions. We apply several known results from these papers in orderto verify the strong semismoothness of G.First note that the strong semismoothness of G is equivalent to the strong semismoothness ofall omponent funtions of G. Now, the funtions Ej , Qmob , G1 and the linear transformations

(ξmin, ξmob, η) 7→ c (ξmin, ξmob, η) are ontinuous di�erentiable with derivatives that are loallyLipshitz-ontinuous on their domains. Therefore, these funtions are strongly semismoothaording to [7℄. Moreover, the minimum funtion is known to be strongly semismooth, andthe omposition of strongly semismooth funtions is again strongly semismooth. Hene alsothe remaining omponents of the mapping G are strongly semismooth. �Unfortunately, we do not know a priori whether the requirement of Theorem 3 regarding thenonsingularity of all elements from the B-subdi�erential of G holds. However, Corollary 2guarantees that it is at least very unlikely to hit a point where this requirement is not satis�ed.



17Moreover, it shows that we an hange this situation by hanging the time step size τ or thespatial step size h (for pratial reasons, it is easier to hange τ). But after hanging the timestep size τ , the Newton iteration has to be restarted. So the previous statement is of moretheoreti nature, beause is is unlikely to stumble aross the same iterate with this hangedtime step size. In our omputational test runs, we never had problems with singular matriesfrom ∂BG. 7. Shur Complement ApproahIn this setion, we want to disuss how the linear system (32) an be transformed in suh away that it an be solved more e�iently. To this end, we utilize a Shur omplement approah.We begin by introduing some abbreviations to keep the formulas lear:
A :=

(

θI|A| + τLA,A
h

)

, B := [B1 | 0] :=
[

τLA,I
h | 0

]

,

C :=

[
C1

C2

]

:=

[

− ∂ẼI

∂ξAmin

∂Q̃mob

∂ξAmin

]

, D :=

[
D11 D12

D21 D22

]

:=

[

− ∂ẼI

∂ξImin

− ∂ẼI

∂ξmob

∂Q̃mob

∂ξImin

∂Q̃mob

∂ξmob

]

.With these abbreviations, (32) reads
[

A B
C D

]

·





∆ξAmin

∆ξImin

∆ξmob



 = −





GA
1 − c̄A

−ẼI

G3



 .We begin by writing this linear system in detail
A ·∆ξAmin + B1 ·∆ξImin = −GA

1 + c̄A ,(35)
C1 ·∆ξAmin + D11 ·∆ξImin + D12 ·∆ξmob = ẼI ,(36)
C2 ·∆ξAmin + D21 ·∆ξImin + D22 ·∆ξmob = −G3 .(37)Similar to the previous setion, D11 is a blok diagonal matrix, where eah blok has the form

(
S1

min,I

)T
Λc

(
S1

min,I

). Likewise, D22 is a blok diagonal matrix, where eah blok has the form
(S1

mob)
T

Λc (S1
mob). Reall that S1

min,I and S1
mob have full olumn rank, Λc = diag

(
1
c1

, 1
c2

, . . . , 1
cI

),and that all ci are assumed to be positive. Hene D11 and D22 are positive de�nite and thereforenonsingular.We now rewrite (36) to obtain(38) D11 ·∆ξImin = ẼI −D12 ·∆ξmob − C1 ·∆ξAmin .Furthermore, we transform (37) into(39) ∆ξmob = − (D22)
−1 ·G3 − (D22)

−1 · C2 ·∆ξAmin − (D22)
−1 ·D21 ·∆ξImin .Now we insert ∆ξmob into (38) and obtain(40) ∆ξImin = D̃−1ẼI + D̃−1D12D

−1
22 ·G3 − D̃−1

(
C1 −D12 ·D

−1
22 · C2

)
·∆ξAmin



18with D̃ =
(
D11 −D12D

−1
22 D21

). D̃ an be obtained from D through a blok Gauss eliminationstep. It is a Shur omplement of D. Sine D is positive de�nite, D̃ is also positive de�nite, f.[19℄. In partiular, D̃ is nonsingular.Finally, we insert ∆ξImin in (35) and obtain(41) [

A− B1 · D̃
−1C̃

]

·∆ξAmin = −GA
1 + c̄A − B1D̃

−1ẼI −B1D̃
−1D12 ·D

−1
22 ·G3,with C̃ =

(
C1 −D12D

−1
22 C2

).To obtain the solution of the initial linear system (35)�(37), we �rst solve (41) for ∆ξAmin.Subsequently, we ompute ∆ξImin from (40) whih essentially requires some matrix-vetor mul-tipliations. Finally, we get ∆ξmob from (39) again by matrix-vetor multipliations and addi-tions.The main omputational ost is, on the one hand, in solving the linear system (41) and, onthe other hand, in the omputation of the inverses needed in (39)-(41).We now want to take a loser look at the omputation of the required inverses. To be morepreise, we do not really need the inverses themselves, but we need their e�et on severalmatries resp. vetors. For the purpose of larifying the omputational ost, we introduethe variables X1, X2, x3, Y1, y2, y3, z3, whih we de�ne subsequently. Now we reapitulate thetransformation.First we solve the linear system
D22 · [X1 | X2 | x3] = [D21 | C2 | G3] .The matries D22, D21 as well as C2 are blok diagonal matries. The dimensions of the bloks ofall three matries math up in a way that this linear system an be broken down in |Ωh| totallyindependent linear systems of size Jmob × Jmob. We already mentioned that all the bloks of

D22 are positive de�nite. So we an solve these small systems by the Cholesky deomposition.Note that all of these have multiple right hand sides. However, this does not inrease theomputational ost signi�antly, sine we need only one deomposition. The resulting matries
X1 and X2 are again blok diagonal matries.Now we ompute

D̃ = D11 −D12 ·X1 , C̃ = C1 −D12 ·X2 , z3 := D12 · x3.Again this an be done blok-wise. Therefore, D̃ and C̃ have blok diagonal form, too.Next we solve the linear system̃
D · [Y1 | y2 | y3] =

[

C̃ | z3 | ẼI

]

.For this system, the same applies as for the previous one. Here C̃ and D̃ have a mathing blokdiagonal form. Therefore, Y1 is a blok diagonal matrix, whereas z3, ẼI are just vetors. Again,the small systems have multiple right-hand sides. This time, however, the square bloks of D̃have variable sizes from 0× 0 to Jmin × Jmin.



19Using this notation, our transformed system reads
[A−B1 · Y1] ·∆ξAmin = −GA

1 + c̄A −B1 · [y2 + y3](42)
∆ξImin = y2 + y3 − Y1 ·∆ξAmin(43)
∆ξmob = −x3 −X1 ·∆ξImin −X2 ·∆ξAmin .(44)Through this transformation of the original system (32), we ould exploit espeially the stru-ture of D and its submatries, whih would have been unused otherwise.Sine B1 is sparse and Y1 is blok diagonal, the produt B1 · Y1 again is sparse. Its strutureis similar to the struture of A. Therefore, the matrix A− B1 · Y1 in the linear system (42) issparse, too. It an be solved by a linear solver like GMRES.Finally, it should be mentioned that we really have only one Newton-type algorithm andthat is the one whih was introdued in Algorithm 1. The Shur-omplement approah andthe simpli�ations in (32) and (33) are only di�erent ways to solve the resulting linear systemse�iently. 8. Numerial ExampleThe reative transport problem introdued in Setion 2 was implemented in two versionsusing MATLAB R©. One version uses the Shur-omplement approah from Setion 7, whereasthe other version utilizes the whole system (25) with the speial element J ∈ ∂BG.For both versions, the disretization of the PDE-operator was done via the same di�erenesheme of seond order. Both versions have to solve the same a priori linear deoupled system,the disretization of (16). This is done through a GMRES iteration in both implementations,sine it is a sparse system. In pratie, this seems to work very well for this partiular linearsystem. Usually only 2 or 3 steps are needed to alulate a su�iently aurate solution. Thuswe will fous on the Newton iteration.In our test example (taken from [10℄), the interation of CO2 with minerals is onsidered. Inthese days, we are faing the global warming of the earth whih is at least partly due to theCO2-onentration in the atmosphere. Therefore, tehniques have been investigated to injetCO2 into the subsurfae. The long term storage of CO2 beneath the surfae of our planet isthe desired goal. This might be more likely if the arbon preipitates would form minerals thanthe arbon being dissolved in the ground water.We use the following generi simpli�ed set of hemial reations to model the desired meh-anism: CO(aq)
2 + H2O R1←→ HCO−

3 + H+Calite+ H+ R2←→ Ca2+ + HCO−
3Min A + 3H+ R3←→ Me3+ + SiO(aq)

2Min B + 2H+ R4←→ Me3+ + HCO−
3It onsists of 3 minerals (alite and mineral B are arbonates, mineral A is a siliate) and6 speies whih are dissolved in the ground water and one aqueous traer. More details and



20insights for this example, espeially its internal funtionality, an be found in [10, Subsetion4.5.2℄.The tehnial details for this example are: domain Ω = (0, 10) × (0, 6), Dary velo-ity q = (0.015, 0)T , water ontent θ = 0.3, (i.e. pore veloity ‖q‖ /θ = 0.05), longitudi-nal/transversal dispersion length (βl, βt)
T = (0.3, 0.03)T , time step size τ = 0.1. The equi-librium onstant of the �rst reation is K1 = 0.1, where the ativity of H2O is already inor-porated; i.e. cH+cHCO−

e
/cCO2

= 0.1. The solubility produts of the three mineral reationsare K2 = 100, K3 = 10, K4 = 1.25; i.e. cCa2+cHCO−

3
/cH+ = 100 (if cCalcite > 0), et. Theinitial values are cCO2

= cHCO−

3
= cSiCO2

= 1, cH+ = 0.1, cMe3+ = 0.01, cCa2+ = 10 (onstantwithin Ω), and cA = 0.2 for x ≥ 6, cCalcite = 0.2 for 1 < x < 6, and zero else. The Dirih-let boundary values for the mobile speies are cCO2
= 3.787, cH+ = 0.3124 , cHCO−

3
= 1.212,

cMe3+ = 0.01, cSiO2
= 1, cCa2+ = 10 on {0} × [1.5, 4.5], whereas we use the initial values on

(0, y) with y < 1.5, y > 4.5. For the other three borders, the homogeneous Neumann boundaryondition is given.In the following alulation, we set the spatial and the time step to h = τ = 0.1. With thissetting, we get 6100 grid nodes for an equidistant quadrati grid. The disretization was donevia a seond-order �nite di�erene method. With the Shur omplement implementation wealulate the resulting onentrations for the 10 speies for 3600 time steps, i.e. a time span of
360 seonds. The results have been heked to math the results from [10℄.Figures 1�3 visualize the numerial results. Note that the di�erenes to the results given in[10℄ are only due to a di�erent olor saling. There is a slow water �ow in horizontal diretionfrom the left to the right. With it enters dissolved CO2 into the omputational domain. Thisdereases the pH value (the negative ommon logarithm of the onentration of H+ ions in thewater). The water stream of low pH value dissolves Mineral A and Calite, when it reahesthose areas. Moreover, the dissolution of Mineral A leads to an immediate preipitation ofMineral B.Table 1 shows the quadrati onvergene for both implementations of our Newton-type meth-ods as predited in the previous theory. The third olumn ontains the errors of the Shuromplement method, whereas the fourth olumn gives the errors of the full Jaobian method.The good onsisteny of these errors shows that these two methods realize the same Newtonmethod where only the linear systems are solved di�erently. Usually these two methods needthe same number of Newton iterations to get below the termination ondition of 2 · 10−6. Withtime step size τ = 0.1, they both need almost always only two Newton iterations after about
10 time iterations.In Table 2 we ompare the linear systems whih arise in these two methods. Both of thesesparse systems are solved with the GMRES(30) method. The numbers in the last two olumnsshow the total number of inner GMRES iterations whih are needed in both methods. The�fth and sixth olumns display the ondition numbers of the linear systems of both methods.Finally, we present in the third and fourth olumns the dimensions of these linear systems.Of ourse, the linear system of the full Jaobian method has always the same size, sine thearising Jaobians always stem from the same funtion. While the linear system of the Shur
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t = 0.4CO2 Mineral A

H+ Calite
HCO−

3 Mineral B
t = 40CO2 Mineral A

H+ Calite
HCO−

3 Mineral B
Figure 1. Results obtained after t = 0.4 seonds. (The graphis are om-pressed by a fator 1.5 in vertial diretion.)
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t = 120CO2 Mineral A

H+ Calite
HCO−

3 Mineral B
t = 200CO2 Mineral A

H+ Calite
HCO−

3 Mineral B
Figure 2. Results obtained after t = 120 seonds. (The graphis are om-pressed by a fator 1.5 in vertial diretion.)
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t = 280CO2 Mineral A

H+ Calite
HCO−

3 Mineral B
t = 360CO2 Mineral A

H+ Calite
HCO−

3 Mineral B
Figure 3. Results obtained after t = 280 seonds. (The graphis are om-pressed by a fator 1.5 in vertial diretion.)



24time step iteration method Shur:‖G (z)‖2 method full:‖G (z)‖2
1 0 3.1753 · 100 3.1753 · 1001 2.7353 · 100 2.3026 · 10−12 1.6990 · 10−2 6.2355 · 10−33 2.9673 · 10−3 2.3402 · 10−64 5.2980 · 10−7 3.9298 · 10−9

2 0 1.8504 · 100 1.8504 · 1001 3.3186 · 10−2 3.3186 · 10−22 6.9773 · 10−4 6.9771 · 10−43 2.9498 · 10−8 4.2795 · 10−8

3 0 1.4602 · 100 1.4602 · 1001 2.1604 · 10−2 2.1604 · 10−22 1.0084 · 10−4 1.0084 · 10−43 5.9014 · 10−10 4.4814 · 10−9

8 0 8.1019 · 10−1 8.1019 · 10−11 5.4402 · 10−3 5.4403 · 10−32 1.1288 · 10−6 1.1334 · 10−63 7.4144 · 10−14 1.4089 · 10−9

18 0 5.0502 · 10−1 5.0502 · 10−11 1.7743 · 10−3 1.7743 · 10−32 1.0200 · 10−7 3.0794 · 10−7Table 1. Comparison of errorsomplement approah is not the Jaobian of G itself but only a reordered submatrix, whosesize depends on the size of the ative set.In this table, we have only listed three time steps sine the displayed tendenies alwaysremain unhanged. The Shur omplement linear system is almost always four times smallerthen the full Jaobian linear system (in the number of rows and in the number of olumns).Furthermore, its ondition number is usually smaller than 3, while the ondition number of thefull Jaobian is typially more than 1000 times greater. The last two olumns show that thefull Jaobian method needs muh more total GMRES iterations than the Shur omplementmethod exept for the �rst linear system in eah time step.9. Final RemarksWe have investigated and implemented a solution proedure for reative transport problemsinluding equilibrium mineral preipitation-dissolution reations. While urrently in the geo-sientists' ommunity often strategies whih are time onsuming [2, 3℄ or whih are of limitedpratial appliability [13℄ are used, our intention was to apply modern mathematial strategiesto this problem. We avoid operator splitting tehniques beause of their well-known potentialdisadvantages. The PDE-ODE-AE-CC system is solved with the semismooth Newton method.We have shown that this semismooth Newton method is typially quadratially onvergent, and



25time step iteration size Shur size full ond.Shur ond. full ShurGMResitera-tions fullGMResitera-tions
1 0 9628 42700 2.8497 3.9813 · 103 4 41 10070 42700 2.9073 3.9812 · 103 5 852 10116 42700 2.8551 4.0279 · 103 5 683 10161 42700 2.8551 3.9812 · 103 5 644 10167 2.8551 5
2 0 9670 42700 2.8497 3.9812 · 103 4 41 10142 42700 2.8554 4.0278 · 103 5 902 10180 42700 2.8554 3.9860 · 103 5 983 10180 42700 2.8554 4.0278 · 103 5 70
3 0 9677 42700 2.9272 4.0273 · 103 4 41 10156 42700 2.9549 4.0273 · 103 5 852 10200 42700 2.9549 4.0278 · 103 5 993 10200 42700 2.9549 4.0276 · 103 5 90Table 2. omparison of the arising linear systemshave on�rmed this by our numerial test runs. Compared to other solvers, our implementationkeeps the number of unknowns small, �rst by using the reformulation/deoupling tehnique ofSe. 3, and seond by using a partiular Shur omplement tehnique whih exploits the speialstruture of the resulting linear systems of equations.The geat redution of the ondition number of the Shur omplement approah ompared tothe full system is an interesting observation in our numerial test runs. A theoretial explanationis urrently under investigation. 10. AppendixThe following result was used in Setion 6. The result itself an be found in [5, p. 60℄ butwithout proof. Sine we are not aware of an expliit referene ontaining the proof, we give thedetails here.Lemma 2. Let B, D ∈ R

n×n with D being a diagonal matrix, and let M = D + B. Then
det M =

∑

α⊂I

det Dα,α · det Bᾱ,ᾱ ,where I := {1, . . . , n}, ᾱ := I \ α denotes the omplement of α ⊂ I, and where the determinantof a 0× 0 matrix is 1.Proof. The proof is by indution on n.



26Let n = 1. Then M, B, D are real numbers and the determinant is a linear mapping.Therefore it holds
det M = det D + det B = det D{1},{1} · det B∅,∅ + det D∅,∅ · det B{1},{1} .Now assume the statement holds for all matries of dimension n×n and let B, D ∈ R

(n+1)×(n+1)with D diagonal and M := D+B. Here we need some spei� notation. Let Bi := BJ,J with J =
{1, . . . , n + 1} \ {i}. This is the matrix that emerges from B by anelling the i-th olumn androw. Let Mi be de�ned in an analogous way. Furthermore letDī := diag(0, . . . , 0

︸ ︷︷ ︸

i−1

, di+1, . . . , dn+1)be the matrix that evolves from D = diag(d1, d2, . . . , dn+1) by disarding the i-th row andolumn and setting the �rst i − 1 diagonal entries to zero. With di and bi we denote the i-th olumn of D and B, respetively. Beause of the linearity of the determinant in the �rstolumn, we then get
det M = det

[
d1 + b1, d2 + b2, . . . , dn+1 + bn+1

]

= det
[
d1, d2 + b2, . . . , dn+1 + bn+1

]
+ det

[
b1, d2 + b2, . . . , dn+1 + bn+1

]

= d1 · det M1 + det
[
b1, d2 + b2, . . . , dn+1 + bn+1

]
,where the last equation follows by expanding the determinant in the �rst olumn. We repeatthis proedure and get

det M = d1 · det M1 + det
[
b1, d2 + b2, . . . , dn+1 + bn+1

]

= d1 · det (D1̄ + B1) + d2 · det (D2̄ + B2)

+ det
[
b1, b2, d3 + b3, . . . , dn+1 + bn+1

]
.Now we iterate this and eventually get(45) det M =

n+1∑

i=1

di · det (Dī + Bi) + det B.Note that Dī and Bi are n×n matries. Hene we an apply the indution hypothesis to obtain
di · det (Dī + Bi) = di ·

∑

α⊆{1,...,n}

det (Dī)α,α · det (Bi)ᾱ,ᾱ

= di ·
∑

α⊆{i,...,n}

det (Dī)α,α · det (Bi)ᾱ,ᾱ ,where the last equation holds beause of the de�nition of Dī. Now it is not di�ult to see that,given any i ∈ {1, . . . , n + 1}, we have
di · det (Dī + Bi) =

∑

i∈α,α⊂{i,i+1,...,n+1}

det Dα,α · det Bᾱ,ᾱ ,sine i ∈ α guarantees, on the one hand, that di is always on the diagonal of Dα,α, and, on theother hand, that the index i does not belong to ᾱ so that we an replae Bi by B. Now we aninsert this result in (45) and get
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det M =

n+1∑

i=1




∑

i∈α,α⊂{i,i+1,...,n+1}

det Dα,α · det Bᾱ,ᾱ



+ det B .Now it holds that ∪n+1
i=1 {i ∈ α, α ⊂ {i, i + 1, . . . , n + 1}} equals the power set of {1, 2, . . . , n + 1}o� the empty set. Furthermore, for di�erent i, two sets {i ∈ α, α ⊂ {i, i + 1, . . . , n + 1}} donot have an intersetion. Therefore α runs through every subset of {1, 2, . . . , n + 1} one exeptfor the empty set. But for the empty set, we have

det D∅,∅ · det B∅̄,∅̄ = det B .Hene we obtain
det M =

∑

α
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