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Abstract. The modeling of reactive transport in the subsurface including mineral precipitation-
dissolution reactions involves a coupling of PDEs, ODEs, and algebraic equations to inequalities.
In the geoscientists’ community, the most frequently used algorithms to solve these kinds of sys-
tems apply some kind of trial-and-error strategies. The aim of this article is to apply a modern
and efficient solution strategy, the semismooth Newton method, to this geoscientific problem,
and to investigate its applicability and efficiency both from a theoretical and a numerical point
of view. In particular, it turns out that the method is typically quadratically convergent.

Key Words: reactive transport, mineral precipitation-dissolution, complementarity problems,
semismooth Newton method, quadratic convergence



1. INTRODUCTION

The modeling of reactive transport problems in porous media leads to systems containing
partial differential equations (PDEs) and ordinary differential equations (ODEs); the PDEs
for the concentration of species which are dissolved in the water (mobile), and the ODEs for
the concentration of species which are attached to the soil matrix (immobile). The immobile
species can be sorbed species or minerals. If the reactions are sufficiently fast, then the as-
sumption of local equilibrium is reasonable. This equilibrium is usually described by a set of
(nonlinear) algebraic equations (AEs) coupling the PDEs and the ODEs. However, the equi-
librium description only by AEs is no longer valid when reactions with minerals are involved.
In this situation, the equilibrium description of the mineral precipitation-dissolution reactions
has to take into account two possibilities for equilibrium: the case of a saturated fluid, and
the case of a complete dissolution of the mineral (see Sec. 2). Such an equilibrium condition
can be expressed by using a combination of equations and inequalities, having the shape of
a (nonlinear) complementarity problem. The resulting system consists of PDEs, ODEs, AEs,
and complementarity conditions (CCs).

For the numerical solution, many publications on reactive transport in porous media suggest
to enforce a decoupling between transport and reaction by applying an operator splitting tech-
nique. By this, the reaction subproblem is fully local, i.e., it consists only of AEs and CCs,
while only the transport subproblem contains the PDEs and ODEs. However, operator splitting
either introduces splitting errors or requires a fixed-point type iteration between transport and
reaction within each time step. In the first case, accuracy considerations, and in the second
case, convergence issues often lead to severe time step restrictions for splitting methods.

A very popular way to handle the PDE-ODE-AE-CC system in computational geosciences is
the following |2, 3|: For the current time step, for each mineral and each discretization point, an
assumption is made (usually based on the previous time step) whether saturation or complete
dissolution will hold. Under this assumption, a Newton iteration is performed. If the result
has no physical meaning (negative mineral concentration, or supersaturated fluid), then the
assumptions are modified in some way and the Newton iteration is repeated, until (hopefully) a
physically meaningful solution is obtained. Besides its heuristic motivation, another drawback
of this procedure is that the CPU time required is significantly higher than for reactive transport
problems without minerals, since several Newton iterations are required per time step. The lack
of efficiency becomes even more troublesome if fully implicit methods (avoiding the splitting
of transport and reactions) are considered, since systems containing PDEs have to be solved
again and again.

Other authors from the geosciences community propose to use a formulation as a free bound-
ary problem for front tracking approaches [13]. However, this approach lacks simplicity as
soon as more than one space dimension is involved and topology changes of the precipitation-
dissolution fronts appear. Another approach is to approximate the equilibrium, i.e., very fast
reactions, by a kinetic description with large rate coefficients. Besides the approximative nature
of this approach, large rate coefficients may increase the stiffness of the problem to solve.

Modern techniques from the optimization theory for the reactive transport problem are con-
sidered in [17, 18] and in |10|. In |17, 18|, an operator splitting is performed, and the now fully
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local reaction problem is replaced by an equivalent constrained minimization problem for the
so-called Gibbs free energy. Its KK'T conditions are solved with an interior-point algorithm.
Numerical test runs are performed without any deeper theoretical investigation. Note that
this procedure leads to additional unknowns, the Lagrange multipliers for the equality and
inequality constraints.

In |10, Sec. 4], to our knowledge for the first time, the application of a semismooth Newton
method to the reactive transport mineral precipitation-dissolution problem is carried out. There
the reactive transport problem is tackled fully implicit, avoiding any operator splitting. The
author considers a rather general situation of reactive problems including equilibrium and
kinetic reactions, where the equilibrium reactions may be of the aqueous, the sorption, or the
mineral precipitation-dissolution type. The implementation of the solution strategy is described
and some results on the nonsingularity of the Jacobian of the system are given.

The following article propagates and investigates similar solution strategies as in [10], but it
focusses on those reactive systems without kinetic reactions, and where all the (equilibrium)
reactions are of aquatic and of mineral type, i.e., no sorption is involved. This restriction allows
to prove stronger theoretical results. The structure of the article is the following: In Sec. 2
the problem is formulated and its mathematical model is given. Sec. 3 contains an equivalence
transformation (going back to [11, 12, 10]) being applied to the PDE-ODE-AE-CC system. The
motivation for this reformulation is a decoupling of some (linear) PDEs, leading to a smaller
nonlinear system. The resulting discretized system is a mixed complementarity problem that
can be reformulated as a nonlinear (but nonsmooth) system of equations. The theoretical prop-
erties of this nonsmooth system of equations will be investigated in the subsequent sections,
cf. Sec. 4-7. In particular, it is shown that a nonsmooth (semismooth) Newton-type method
applied to this system is (usually) locally quadratically convergent since the resulting (gener-
alized) Jacobian has no inherent singularity properties. Sec. 8 gives some numerical results for
the semismooth Newton method applied to a special instance of our problem, and we close with
some final remarks in Sec. 9.

2. PROBLEM FORMULATION

This section gives a precise formulation of the mathematical model for the application that
was outlined in the introduction. This formulation will be the basis for our subsequent theo-
retical and numerical investigations.

To this end, let us consider the concentrations of I mobile species ¢ = (¢, ¢a, . . . ,cI)T. These
species are dissolved in the groundwater. Their concentrations are time- and space-dependent.
They are convected by a given Darcy flow field ¢ and are subject to dispersion. The convection-
diffusion operator for these species is given by

Lic;=—-V - (DVe¢;—qc;), i=1,...,1,

with dispersion tensor D = D(q) which depends on the flow field ¢q. Clearly, this operator
L=(Ly,..., LI)T is linear and acts in the same way on all mobile species, i.e. L1 =---=Lj.

The constant 6§ € (0,1) denotes the fraction of the mobile fluid-phase volume. With ¢ =
(Crat,--- ,61+j)T we denote the concentrations of the I mineral species. These concentrations
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are also variable in time and space. They are attached to the soil matrix and therefore neither
subject to convection nor diffusion. But they are like the mobile species involved in chemical
reactions with other mobile or mineral species. In this paper we restrict ourselves to equilibrium
reactions, i.e. reactions that are actually in the condition of equilibrium or equations which are
sufficiently fast to be approximately considered to be in equilibrium. R = (Ry,..., R;) denotes
the vector of reaction rates that are necessary to keep the chemical system in equilibrium.
Together with ¢ and ¢ they form the unknowns of the system to be considered here.
The I + I mass balance equations are

0
EQC +Lc = SiR,

0
(1) aé - SQR,
given on the domain [0, 7] x  C R? or R? together with given initial and boundary conditions.
S
S

J is the number of chemical reactions. If we have, for example, an equilibrium reaction

Xl —|—2X2 <—>X3

The matrix (s;;) = S = e RUFD*/ 5 the matrix of stoichiometric coefficients, where

we shift all species to the right side
0«— —X; —2X5+ X3

and get a column of matrix S with entries —1, —2, 1 in the corresponding positions. It is well
known that any linear dependence of the chemical reactions (i.e. the columns of S) indicates a
redundancy of chemical reactions [1]. Hence, without loss of generality, we can assume that S
has full column rank,

(2) rank (5) = J.
Additionally, we demand that the columns of S; are linearly independent
(3) rank (S1) = J.

Furthermore, we assume that each mineral is participating in one and only one mineral reaction,
and that in each mineral reaction, exactly one mineral is involved. Hence, in this paper, a
mineral reaction is a reaction with one mineral and one or more mobile species involved. With
mobile reactions we indicate reactions in which only mobile species participate. By J,,o, we
denote the number of mobile reactions and with J,,;, the number of mineral reactions. It
follows that J,,;,, = I. Since in our model we have only mineral or mobile reactions, it holds
J = Joob + Jmin. The stoichiometric matrix then reads

1 1
2 _

where, for simplicity of notation, we have replaced the diagonal matrix representing the mineral
participation in the mineral reactions by —/, the negative identity matrix. Therefore, reactions
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1,..., Jmop are mobile and reactions J,,,, + 1, ..., J are mineral, because the columns of .S refer
to chemical reactions.

The equilibrium conditions for the reactions not involving minerals are modeled by algebraic
equations

(4) chi,j_k:j:o (j:l,...,Jmob),

where k; are given constants. They hold in each point of space and time. Since we expect the
solutions to be positive, equation (4) can equivalently be written as

I
Q; (c) ::Zsi,j-lnci—lnkao =1, Jmop) -

1=1

In matrix notation, the vector Qe = (Q1, @2, ..., Q) then becomes
1 T
Qmob (C) - (Smob) Inc — Kl ,

where Ky = (Inky,...,In k]7nob)T is the vector of equilibrium constants in logarithmic form and
In c is a vector where the logarithm is applied separately to every component of the vector c.

For the mineral equilibrium reactions, we have the complementary conditions
Ej(C)'Ej = O/\EjZO/\Ej(C)ZO (j:Jmob—l—l,...,J),

where E; (¢) :=Ink; — 21, 5, - In¢;. The case E;(c) =0, > 0 corresponds to a saturation

of the fluid with respect to this mineral reaction, and the case E;(c) > 0,¢; = 0 corresponds

to the total dissolution of the mineral and an undersaturation of the fluid. Again we can write
T . . .

E=(E;. ,+1,---,E;) in matrix notation as

E(c)=Ky— (S} m)Tlnc

m

with Ky = (Inkj, . .1,...,Ink;)". The constant 1/K, (componentwise) is the so-called solu-
bility product.
We decompose the reaction vector R into

_ Rmob
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with R, and R, being of size J,,,, and J,,;,, respectively. Utilizing the structure of S, the
full system reads

(5) %90 +Le = S} opRmob + SpyinBmin = S1R,
) 96 = R,

(7) Ei(c)- ¢ = 00 ="Jnp+1,....J),

(8) ¢ > 0(=Jdnap+1,...,J),

(9) Ei(c) > 0(=Jdnp+1,...,J),

(10) Qmov (¢) = 0,

for the I + I + J unknowns c¢,¢ and R. Note that this is a differential-algebraic system of
ordinary and partial differential equations coupled with complementary conditions arising from
the mineral equilibrium reactions.

3. DECOUPLING AND REFORMULATION OF THE COMPLEMENTARY CONDITIONS

The aim of this section is to reduce the size of the overall system (5)-(10) by using suitable
decouplings and reformulations. Since these techniques are already known from |11, 12| (but
strictly needed for our subsequent analysis), we will keep this section as short as possible.

First, we apply the decoupling technique proposed in |11, 12| to the PDE-ODE system (5)—
(6). This will lead to a decoupling of some linear PDEs. The remaining PDE-system will
then be significantly smaller than the original PDE-system. To this end, we define Si as a
matrix consisting of a maximum set of linearly independent columns that are orthogonal to each
column of Sy, i.e. (Sl)T Sll = 0. Recall that the columns of S; were assumed to be linearly

independent, cf. (3). Hence the pseudo-inverses of S; and Si are given by (SipSl)_l ST and
( (Sll)T Sf)_l (Sll)T, respectively. Multiplying (5) with these two pseudo-inverses, we obtain

T -1 T (0
(11) ((Sf) Sf) (S1) (§90+Lc) = 0,
(12) (SlTSl)‘lslT (%QC—G—LC) = R,
8* _
(13) EC = _Rmzn-

We now substitute
(14) 0= ((sli)Tsli)_1 (S5) e, €= (ST8) " STe,

and partition the vector £ into

é- = (é-moba gmm)
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of size Juob, Jmin- Then splitting equation (12) into two parts and adding the third block to
the second part, we get

0

—0 Ln =
prad 0,

O e v Ly = R
8t mob mob mob

0
- (0 min T C + L min 07
o (0min+0) + L
0 c
ot
We may consider the second and fourth equations as a definition for R,,;, resp. R,... Since
we are not directly interested in R, we drop both equations (but can use them to compute R
a posteriori).
It is well known that complementary conditions can be expressed equivalently via NCP-
functions, also called C-functions, cf. |6, 7|. Let ¢ (a,b) = min{a, b} be the minimum function.
This function is an NCP-function, i.e. it has the defining property that
p(a,b)=0<=a>0,b>0,a-b=0.

Using this minimum function, we can write the complementary conditions (7) (9) as
(p(Ej(C),éj):O (jzl,,Jmm)

In vector notation, this becomes

(15) ¢ (E(),0) =0,

where ¢ is applied to each component of E (¢) and ¢.
The resulting system now reads

0
16 —0 Ln =
(16) 0+ Ln =0,
0

(18) —¢(E(c),0) = 0,

(19) Qmob (C) = 07

where ¢ can be represented as

(20) c=¢c¢ (gmma gmoba 77) = Srlnm ’ gmm + Srlnob ' gmob + S1l777

cf. (14). Note that (16) is now linear with respect to n and it is decoupled from the other
equations (7 is not contained in the other equations). The remaining nonlinearly coupled
system (17)—(19) is reduced in size from I + J + Jyi, rows to I + Jyui, rows compared to the
original system (5)—(10). Together with the size reduction of J rows, the J unknowns R could
be dropped. They can be computed a posteriori. We now discretize the system in space and
time. To keep the notation simple, we suppress subscripts indicating the discretization (except
we denote Lj as the discretization of L). For the sake of simplicity, we assume the implicit



7

Euler time stepping scheme. We further mention that equation (16) in its discretized version

can be solved for i directly (say, by a linear system solver like GMRES). Hence 7 is not viewed

as a variable any longer. We therefore write ¢ = ¢ (&nin, &mob) for the discretized function c.
The remaining discrete system in the variables (§nin, Emob, €) then reads

(21) G1:= O0&min + T+ TLpEmin — 0604 — &4 =0,
(22) G2 = - (E (C (gmina gmob)) ) E) =0,
(23) G3 = Qmob (C (gmmu gmob» =0.

The superscript ’old” indicates the previous time-step. The time-step size is 7. We assume the
domain  has been discretized into the grid set €, with |Q,| grid points. Then &, Emob, € are
vectors with Join - Q] Jmob - || 5 Jmin - |21] components. These vectors are concatenations of
the function values in every node of the grid. L, is a linear mapping which is the discretization
of the PDE operator L. In (22) and (23), the functions Q.e, ¢, E, ¢ are to be applied to (the
discretizations of) &in, Emob, € in every node separately. For example, a more detailed way to

represent ¢ (&min, Emob) 18

T
C (gmzna fmob) = |C (é-rlm,n’ grlnob)T € (gfmrm ggwb)T 7oy C (51522]%'7 gL?SZJ)T} )

where & . & . are our variables in one grid point. For the sake of simplicity, we define the
abbreviations
E (gmina gmob) = E (C (gmina gmob)) s
Qmob (gmmu gmob> = Qmob (C (gmmu gmob» .

Let

G

G=| G
Gy

Then we have to solve the nonlinear system of equations

G (&mins Emob, €) = 0.

Note that this is a nonsmooth system due to the definition of G5 via the minimum function.

4. THE GENERALIZED JACOBIAN AND SEMISMOOTH FUNCTIONS

In this section, we will shortly review the definition for the generalized Jacobian and introduce
an interesting result concerning the vector field G. More detailed statements and examples can
be found in [4, 6, 7, 14, 15, 16].

Definition 1. Let F' : R"™ — R™ be locally Lipschitz continuous and w € R™ be arbitrarily
given. Let Dp C R™ be the set of differentiable points of F'. Then the set

OpF (w) := {H € R™" | 3{wy} € Dp, wy — w and JF (wy) — H}
15 called the B-subdifferential of F' in w, where JF' is the Jacobian of F'. The convex hull
OF (w) := conv (OpF (w))



is Clarke’s generalized Jacobian of F' in w. Finally, the C-subdifferential is defined by
T T \7T
O F (w) = (8F1 ()" x Fy (w)T x - x OF,, (w) )

If m =1 then OF (w) is also called the generalized gradient of F. Note that if F' is continuously
differentiable in a neighborhood of w, both sets OF (w) and dpF (w) contain the Jacobian of
F" as their only element.

Note that 0F (w) C OcF (w) always holds . The C-subdifferential of F' can be computed
very easily, which is often not the case for the generalized Jacobian of F. Since conv (A x B) =
conv (A) x conv (B) for any sets A, B, it follows that the C-subdifferential can also be repre-
sented as

(24) O F (w) = conv ((8BF1 ()" x OpFy ()" X - x IpFy (w)T>T) .

Now let G be the mapping from the previous chapter. Each part G; (i = 1,2,3) of G is itself a
multidimensional mapping. With G, ; we denote the components of the mapping G; (i = 1, 2, 3).

Lemma 1. Let G be the nonlinear mapping that was introduced in (21) (23) and let p := |Qp],
say Q, = {x1,29,...,2,}. Furthermore, let w = ({min, Emob, €) be an arbitrary element of

T
RImin? x RImevP 5 RIminP qith components Emin = (fmm (xl)T,fmm (x2)T s Emin (xp)T)

and Emep, € defined in a similar way. Suppose that ¢ (Emin, Emob) > 0 componentwise. Then the
following statements hold:

(1) The B-subdifferential of G can be written as the cross product
8BG (U)) = 8BG1 (w) X 8BG2 (w) X 8BG3 (w)

with 0pGy (w) = {JG1(w)} and OpGs (w) = {JG3(w)}, where JGy and JG3 are the
Jacobians of Gy and Gs, respectively.
(2) The B-subdifferential of Gy can be broken down into

8BG2 (’LU) = 8BG2 (’LUl) X OBGQ (’wg) X ... X 8BG2 (wp) s

where w; = (Emin () s Emon (1) , € (24)).
(3) Let z; € Qn, a = (&min (1) s Emon (25)) and b= ¢ (x;). Then we have

IpGa (w;) = —0dpp (El(a)>b1> X —0pp <E2(a), b2> X ...X =0pyp <Ef(a)>bf> .
(4) Let z;,a and b be as before. Then

9E;(a) OE;(a Cp T
{(as,i(m)’ agfn(ob)’(]) ) (O,O,elT)} » Af Ejla) = by,

e (B@) = 1{0.0.e0) FE@ >
[(#0 50 o)} £ B (o) < by

where e; 1s a unit vector, with all components vanishing and component | =i - Jyin + J
being one.
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Proof. Tt is easy to see that G is locally Lipschitz continuous, since G, G5 and E are continu-
ously differentiable and the minimum function ¢ is (globally) Lipschitz continuous.

(1) This statement follows directly from the observation that the two block components G and

G5 are continuously differentiable, so that 0pG;(w) = {JG1(w)} and 0pGs(w) = {JG3(w)}.

(243) These two statements are direct consequences of the definition of the corresponding B-
subdifferentials, taking into account that the second argument ¢ of the NCP-function ¢ can
vary independently in every component. Note that statement (2) expresses the B-subdifferential
OpGy(w) as a Cartesian product of the B-subdifferentials at each of the p vectors w; (which
itself is still a vector in R7= for all i = 1,..., p), whereas statement (3) gives the structure of
the B-subdifferentials for each of these block components.

(4) The two cases Ej;(a) > b; and FE;(a) < b; are obvious since ¢ is continuously differentiable
in these cases, so that the B-subdifferential reduces to the existing gradient which can be
calculated directly from (22). The remaining case E;(a) = b; can be verified by choosing
suitable sequences {*} converging to b. O

Note the fact that G; and G5 are continuously differentiable means that their B-subdifferential
equals the cross product of the B-subdifferential of their components. Therefore, an immediate
consequence of this lemma and (24) is the following

Corollary 1. Let G be the nonlinear mapping that was introduced in (21)—(23), and let w =
(Emins Emob, €©) be an arbitrary element of R7min 1@l x RImov 2l ]R;]J”m'lﬂhl. Then it holds

0G(w) = 0cG(w) .

5. NEWTON’S METHOD AND ACTIVE SET STRATEGY

Here we describe our Newton-type method applied to the nonlinear system of equations
(21) (23) and its relation to an active-set strategy. Some parts of this section is taken from
the Habilitation Thesis 10|, whereas the relationship between our Newton-type method and
an active set strategy is, in principle, known [8, 9], although it has not been discussed within
our context. The formulas to be derived in this section will, in particular, be needed in the
subsequent sections.

The linearization of (21)-(23) via Newton’s method leads to the linear system

Agmm Gl
(25) H| ALy | = — | Ge ,
Ac G

with H € 0gG(w). Recall that G is not differentiable everywhere due to the nondifferentiability
of the minimum function ¢. In the points where G is (continuously) differentiable, H coincides
with the Jacobian of G and the formula above is equal to the formula of the classical Newton
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method. For the non-differentiable case, we have replaced the Jacobian in a suitable way fol-
lowing the theory of the semismooth Newton method from [15], see also [6, 7, 16, 14] for related
material. In the following, we will construct one particular element of the B-subdifferential of
G at w. The construction also shows how the other elements from the B-subdifferential can be
obtained. In the differentiable case, our element is simply the Jacobian of G at w.

To this end, we introduce an active set strategy. As already mentioned, the vectors &,,;, and
¢ each contain || -+ Jy, components (and the vector &, contains || -+ Jy0 components),
where || is the number of grid points. We partition the set {1,..., Jm} X €, into

(26) A = {(z,x) e{L,... Tt X U | Ei Epin (), Emop () > & (x)} ,

(27) 7 = {(z’,x) € {10, Toind X Q| By (Emin (2) 1 Eme (2)) < & (x)} .

Note that this partition is somewhat artificial. Alternatively, we could have defined the sets
A and Z in a different way by putting all index pairs satisfying E; (Epmin (), Emos () > & (2)
as well as an arbitrary subset of the index pairs satisfying FE; (&min () , Emop (2)) = & (2) into
the set A, whereas the remaining index pairs belong to the index set Z. We will come back to
this point at a later stage. For the moment, we use the two particular index sets A and Z as
defined in our previous formula. In contrast to the more general case, this simplifies to some
extent our notation; moreover, it corresponds to our actual implementation of the nonsmooth
Newton-type method.

For reasons that will become clear soon, the set A will be called the set of active indices,
whereas its complement Z will be called the set of inactive indices. We emphasize that this
partitioning into active and inactive indices has to be computed in each Newton step, since
Emin, Emop and € change in each Newton iteration. Restricted to one species ¢, we can define the
set of active and inactive indices as

A, = {ZL’GQh|('é,ZL')EA},
Z, = {xe€Q|(i,x) eI}
forte=1,..., Jnin. With these sets, we have

29 (B lnin (0) 6 ()65 (@) = {2(2 0 (2 o () e

For an index (i,7) € Z with E; (Emin(®), Ema(t)) = &(x), the function ¢ (E (), ) is not
differentiable. As a replacement for the Jacobian, we take an element of its B-subdifferential,
namely

85 min ’ 85 mob

(which is consistent with the previous definition of the active and inactive index sets, cf. (28)).
For the indices in A, we always have the differentiable case due to the definition of this index
set. Due to Lemma 1, it follows that this particular element belongs to the B-subdifferential

(aEz- (Enin () Emon (2)) OF: (6min (2) 6 (1)) 0)
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of G at w. In our subsequent analysis, we will mainly work with this particular element from
OpG(w) and therefore call it J. In particular, we consider the nonsmooth Newton iteration in
(25) using this particular element J rather than an arbitrary element H € 0pG(w).

We now want to exploit the special structure of the particular matrix J in order to decompose
the linear system (25). To this end, we reorder the entries of &,,;,, and ¢ in the following way

A A

We apply the same reordering to our function GG. Additionally, we reorder the rows of G; and
G5. Altogether, this corresponds to reordering the rows and columns of J. We perform the
following decompositions:

G, = ; aL = h ) E= [ ) Srlnm = Srlnm Srlmn )
1 < G_’1Z h L% EI ( JA | ,I)

etc. Similar to the partition of &,,;,, we split the discrete differential operator L, in

Lﬁgmzn = Lﬁ’Agrﬂzn + L;?Jégnn ’
L%émzn = Lg’AgrfLm + Lg’zégun :
With this restructuring, the linear system (25) reads
(29) J Agmob = - _EN )
AcH —FE7
NG e
with
(0114 + 7L7) e 0 I O
TLEA (0hm+72i") 0 0 Ig
(30) J = 0 0 0 —I‘A‘ 0
_ 8EI _ 8EI _ aEI O O
@gmzn @g'rj;—nn (?Emob
9Qmob 9Qmob 9Qmob O O
Fmin Opin ot

From the third set of equations, we immediately obtain

(31)

There is no need to compute Aé4, because of (31) we can simply set the new Newton iterate

as

At =,

E.A,new

= 0
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(this explains why A is called the active set). Furthermore, the unknowns Ac” only appear in
the second set of equations. These equations can be solved for Aé’:

AF = ~Gf = 7L Aghy, — (00 + TLET) - AL

By these equations, A¢’ can be computed a posteriori. After these two reductions, the resulting
system reads

Aé-mob G3
with
<HI\A\ —+ TL;?’A> TL;?’I 0
7._ OF E IE
(33) = R TOe, Do
8Qmob 8Qmob 8Qmob
8€7J§LG 86%”',” 8fmob

This linear system is smaller than the original linear system (29), and it is solvable if and only if
(29) is solvable. More precisely, the absolute values of the determinants of J and J coincide. To
see this, note that, by using elementary row and column additions as well as row interchanges,
we can transform J into

0 0 0 0 Ig
0 0 0 I O
Jy (91 A+ TLf’A> Lt 0 0 0
O O o
ok, 0. e 0V
8Qmob 8Qmob 8Qmob 0 0
8€7J§LG 86%”',” 6gmob

Of course, J; is nonsingular if and only if J is nonsingular, and their determinants are the same
except for possibly the factor —1. The same holds for J; and J, because .J; results from .J by
erasing the first rows and last columns, which belong to the block with the unity matrix and
the negative unity matrix. Altogether, it follows that

(34) det J = 4 det J.

In the following section, we will show that this determinant is nonzero.

6. CONVERGENCE OF THE NEWTON-TYPE ALGORITHM

Now we want to study the nonsingularity of the matrix J from the previous section (at
the arbitrary point w considered so far which is not necessarily assumed to be a solution of
our problem). The nonsingularity of the matrix .J and therefore of .J was first shown in |10,
Section 4.4.5| even in a more general setting. The proof given here, however, is different and the
statement is stronger. The nonsingularity of this matrix is essential both for the solvability of
the linear system (32) and for the local rate of convergence of our nonsmooth Newton method.
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First, let us examine the submatrix

_ aEI (szn 75mob) _ aEZ (szn 75mob)

B — ~ 35,{“,1 ~ a5mob
6Qmob(£min7€mob) 8Qmob(€minv£mob)
ag»,zm,n 8fmob

of the matrix J. The nonsingularity of this matrix is shown even more generally in |10, Section
4.4.5]. Note that every entry of B is a block diagonal matrix. For example,

8@77101) (gmzna gmob) _ dlag <8Qmob (gmzn (Il) >€mob (113'1)) 8Qmob (gmzn (xp) >€mob (Ip))>

with p = |]. By column and row interchanges, we can transform B into a block diagonal
matrix, further denoted by C', so that every block corresponds to one grid point x € §;, and
has the form

_ OB1(émin(2)bmob(®))  _ OBZ(Emin (2)Emob(2))

B — 5 6€;nzn - ag'mob
9Qmob (fmin (1’) s§mob (1’)) 9Qmob (fmin (1‘) Emob (1‘))
ag%’nn asmob

With the definitions from Section 2 and the representation (20) of ¢, we can easily see that
B = (Srlnin,I | Sflnob)TAC (Srlnin,I | Sjnob)

holds, where A, = diag <é, . i). Since we postulated that all ¢; should be positive on

) cr

the whole domain €, the block B is always symmetric positive definite in view of our rank
condition (3). Therefore, C' is symmetric positive definite. In particular, C' is nonsingular.
Since column and row interchanges do not change the rank of a matrix, it follows that B is also
nonsingular. To prove the nonsingularity of the global matrix J we deviate from the strategy
used in [10].

The columns of B form a basis of its column space. Consequently, there exist unique matrices
D; and Dy such that

o dEz %?Im Emob) . OET (Emin Emob) _ 0Fr (gvgnm Emob)
~ min ~ asmob —_ ~ min
anob(ﬁminvgmob) Dl _'_ anob(ﬁminvgmob) D2 anob(ﬁminvgmob)
8§%Lin agmob 86‘,’:\”,”
or, equivalently,
_ 6EI (gmzn 7€mob)
B . Dl g - aé.'m'Ln

D2 o 9Qmob (§min Emob)

Next we post-multiply J in (33) with the block matrix

I 00
X = D1 I 0
Dy 0 I
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from the right hand side and obtain

04 + 7L + 7L - Dy LM 0
T T OE1 (fmin 7€mob) OFE1 (fmin 7§mob)
1= J . X == O _~ 8€;nzn _~ O&mob
O anob(ﬁmin 75mob) anob(ﬁmin 75mob)
ag,,j;—”n aSmob

Since the determinant of X is obviously 1, it follows that
det J = det jl .
On the other hand, the determinant of .J; is given by

et (1) = det (0@ + L™ + 7L - Dy ) - det B.

Therefore, in view of the previous discussion, J; is nonsingular if and only if H := 014 +
TL?’A + TL;?’I - Dy is nonsingular.
Now we apply Lemma 2 from the appendix to the matrix H and obtain

det H = Z det 01 5 - det <7‘L;L4’A + TL;?’I . Dl)g 5
/8 I

where 3 C {1,...,|A|}and 3 := {1,...,]|A|}\B. The matrices 615 5 and (TL;?’A +rLM Dl)

8,8
are submatrices of 614 resp. (TL;?’A + TL;?’I . D1>. Since the determinant of a 0 x 0 matrix

is defined as 1, we get

det H = Z 6181 . det (TL;?’A +7rL Dl)ﬁﬁ

= 044 S 9 7l det (Lg‘vf‘th;f’I : Dl)m .
1BI<| Al ’

For the next theorem, we assume that Lj, is an arbitrary discretization of the PDE operator L.

This discretization might depend on A but not on 7. Furthermore, we assume that the spatial

step size h is given and fixed. Then our theorem states the dependence of the nonsingularity

of J on the time step size 7.

Theorem 1. For sufficiently small time steps T, the system matriz J is nonsingular. Further-
more, there are at most Jpp, - |Qn| time steps T such that J is singular.

Proof. Note that the determinant of H is a polynomial in 7. The degree of this polynomial is
|A|, where |A| < Jin - || always holds by definition of the active set A. So this polynomial
has a maximum degree of J,,;, - [,|. Tt is not the zero polynomial since it has 0 as constant
term. So Jpin |4 is also the maximum number of its roots. Hence either all roots are complex,
or there exists a smallest positive root which is our smallest time step. Since det B # 0 always
holds, and since we have det J; = det J = & det J according to (34), the statement follows. [
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Additionally, we now assume that our PDE operator L, emerged from a difference scheme of
first or second order. In fact, the subsequent discussion would hold for any PDE operator
1

that contains 5 in every nonvanishing entry. The variable / is the spatial grid width of our

discretization. Hence every entry of L;, that does not vanish contains the factor % We therefore
conclude that every non-vanishing entry of Lf’A + Lf’I - Dy contains the factor % (some entries

! ). Hence, for every index subset ¢, there exists a matrix Ls such that

may contain ;5

1
A,A AT
(Lh + LM D1>5’5 == Ls

holds.

In contrast to the previous theorem, we study in our next result the correlation of the
nonsingularity of J for variable space step size h, while we assume that the time step size 7 is
given and fixed.

Theorem 2. Let the PDE operator Ly, result from a difference scheme of first or second order.
Then the system matriz J is nonsingular for all sufficiently small space steps h. Furthermore,
there are at most 2+ Jpin - || space steps h such that J is singular.

Proof. Every non-vanishing entry of Lj, is a polynomial in % of first or second order. The same
holds for Lf’A + Lf’z - Dy and all its submatrices. With the Leibniz formula, we conclude that

det (L;?’A + Lf’z : D1> __is a polynomial in % of maximal degree 2 - | 4| with a zero constant
term. Therefore, det H is always a polynomial in % of degree at most 2 - Jyn - |Q]. Again, 64
is the constant term of this polynomial, hence it is not the zero polynomial. Therefore it has
at most 2+ Jyi, - || Toots.

Let 2z, be the largest real root of this polynomial. Then there exists a corresponding smallest

positive space step hg with z,, = hio So det H # 0 holds for all h € (0,hg). Since det B #
0 always holds, and because det Ji = detJ = +det J, according to (34), we have proved

everything. 0
We now generalize the previous two theorems slightly.
Corollary 2. Let w* := (&5, 0, C°) € RImin [l s RImov 2l Ri’"m'm’l‘ be a grid vector.

Then the following statements hold:

(1) Let h be given. Then all H € 0pG (w*) are nonsingular for all sufficiently small time
steps T. Furthermore, there is only a finite number of time steps T such that at least
one element in OgG (w*) is singular.

(2) Let T be given and let Ly be as in Theorem 2. Then all H € 0pG (w*) are nonsingular
for all sufficiently small space steps h. Furthermore, there are only a finite number of
space steps h such that at least one element in OpG (w*) is singular.

Proof. So far, we have shown the two statements for the particular element J from the B-
subdifferential. However, as outlined after the definitions of the active and inactive index sets
A and 7 in (26) and (27), respectively, the other elements from dpG(w*) can be obtained by
a minor change of these definitions where, basically, some of the index pairs from Z are moved
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to the index set A. The nonsingularity of the corresponding element can then be shown in
essentially the same way as we proved the nonsingularity of the particular element .J. Hence
the desired statements follow from Theorems 1 and 2, respectively, taking into account that
the number of matrices in dgG (w*) is finite, c¢f. Lemma 1. O

Note that all the previous nonsingularity results hold at an arbitrary point w (or w*). Hence
all iterations of our Newton-type method are (not only locally) well-defined. But it should be
mentioned that the minimal time step size in two different grid points may differ. So this value
could decrease constantly during a Newton iteration.

We next give an exact statement of our Newton-type method for the solution of the nonlinear
system of equations from (29).

Algorithm 1. (Nonsmooth Newton Method)
(S.0) Let w® € RImin |l 5 RImov |l ¢ RImin 1l - and set k = 0.
(S.1) If G (wk) =0, stop.
(S.2) Let Ji € OpG (w") be the element defined in Section 5. Find a solution d* of the linear
system
Jkd = -G (wk) .
(S.3) Set whtl :=wk +d*  k — k+1, and go to (S.1).
The following is the main local convergence result for this Newton-type method.

Theorem 3. Let w* := (&£, ") € RIminll st RImovl@nl 5 RImin 1l e g grid vector
such that w* is a solution of the nonlinear system G (w) = 0 and H is nonsingular for all
H € 0gG (w*). Then there exists an € > 0 such that for every starting point w® € B, (w*), the

following assertions hold:

(1) The Newton-type iteration defined in Algorithm 1 is well-defined and produces a sequence
{wk} that converges to w*.
(2) The rate of convergence is quadratic.

Proof. The assertion follows from [15]| as soon as we have shown that the equation operator G
is a strongly semismooth function, see |6, 7, 16, 14| and references therein for further details on
(strongly) semismooth functions. We apply several known results from these papers in order
to verify the strong semismoothness of G.

First note that the strong semismoothness of G is equivalent to the strong semismoothness of
all component functions of G. Now, the functions Ej;, Qe , G1 and the linear transformations
(Emins Emoby M) — € (Emins Emob, ) are continuous differentiable with derivatives that are locally
Lipschitz-continuous on their domains. Therefore, these functions are strongly semismooth
according to |7|. Moreover, the minimum function is known to be strongly semismooth, and
the composition of strongly semismooth functions is again strongly semismooth. Hence also
the remaining components of the mapping G are strongly semismooth. U

Unfortunately, we do not know a priori whether the requirement of Theorem 3 regarding the
nonsingularity of all elements from the B-subdifferential of G holds. However, Corollary 2
guarantees that it is at least very unlikely to hit a point where this requirement is not satisfied.
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Moreover, it shows that we can change this situation by changing the time step size 7 or the
spatial step size h (for practical reasons, it is easier to change 7). But after changing the time
step size 7, the Newton iteration has to be restarted. So the previous statement is of more
theoretic nature, because is is unlikely to stumble across the same iterate with this changed
time step size. In our computational test runs, we never had problems with singular matrices

from 05G.
7. SCHUR COMPLEMENT APPROACH

In this section, we want to discuss how the linear system (32) can be transformed in such a
way that it can be solved more efficiently. To this end, we utilize a Schur complement approach.
We begin by introducing some abbreviations to keep the formulas clear:

A= <(9]|A| —i—TLf’A) : B:=[B;|0]:= [TLf’I | O] :

OE OE OE
C:: |i01 :| = [ 867A;1fn ] ’ D — |:D11 D12 :| = [ _@fﬁfn _@g'mfb ] )

C anob D D anob anob
2 T 21 22 T Fr

With these abbreviations, (32) reads

A _ ZA
A BT (Bl G-t
C D ’ Agmm = - _EI
Agmob G3

We begin by writing this linear system in detail
(35) A- Aémzn + Bl Afmm —G'fl —+ E‘A
(36) 1 ’ Agmm + Dll ' Agmm + D12 ’ ASmob = EI,
(37) C2 ) Agém + Do - Aggun + Doy - Aé-mob = _G3 .

Similar to the previous section, Dy is a block diagonal matrix, where each block has the form
(S}mnl)TAc (S}mnz) Likewise, Dy is a block diagonal matrix, where each block has the form

(SL )" A (S ). Recall that Spin.z and S}

mob c1lcg?

have full column rank, A, = diag ( L l)7
and that all ¢; are assumed to be positive. Hence D11 and Dy, are positive definite and therefore
nonsingular.

We now rewrite (36) to obtain

(38) Agmm = EI — Dis - Agmob - Cl Aémzn :
Furthermore, we transform (37) into
(39) A5mob = - (D22)_1 ' GS - (D22) C12 Agmzn (D22) D21 Agmm :

Now we insert A&, into (38) and obtain

(40) ALl = D7'Er+ D' DyyDyy - Gy — D7 (Cy — Dy - Dyt - Gy ) - AEA,,

main
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with D = (Dn — D12D2_21D21). D can be obtained from D through a block Gauss elimination

step. It is a Schur complement of D. Since D is positive definite, D is also positive definite, cf.
[19]. In particular, D is nonsingular.
Finally, we insert A¢Z . in (35) and obtain

min

(41) [A _ B D—IO] AEA = G4t~ BD By — B,D'Dyy - Dy - G,
with C' = (Cl - D12D2_2102).

To obtain the solution of the initial linear system (35)—(37), we first solve (41) for A&R, .
Subsequently, we compute Affnn from (40) which essentially requires some matrix-vector mul-
tiplications. Finally, we get A&, from (39) again by matrix-vector multiplications and addi-
tions.

The main computational cost is, on the one hand, in solving the linear system (41) and, on
the other hand, in the computation of the inverses needed in (39)-(41).

We now want to take a closer look at the computation of the required inverses. To be more
precise, we do not really need the inverses themselves, but we need their effect on several
matrices resp. vectors. For the purpose of clarifying the computational cost, we introduce
the variables X1, X5, x3, Y1, 42, y3, 23, which we define subsequently. Now we recapitulate the
transformation.

First we solve the linear system

D22'[X1 |X2 | I3] = [D21 | Cy | Gg] .

The matrices Doy, Doy as well as C'y are block diagonal matrices. The dimensions of the blocks of
all three matrices match up in a way that this linear system can be broken down in || totally
independent linear systems of size J,op X Jnop. We already mentioned that all the blocks of
Dys are positive definite. So we can solve these small systems by the Cholesky decomposition.
Note that all of these have multiple right hand sides. However, this does not increase the
computational cost significantly, since we need only one decomposition. The resulting matrices
X, and X, are again block diagonal matrices.
Now we compute

D:Dll_D12'X1>ézCl_D12'X2>Z3 ::D12'x3-

Again this can be done block-wise. Therefore, D and C have block diagonal form, too.
Next we solve the linear system

D[¥i |y [ ys) = |C'] 2| Ex -

For this system, the same applies as for the previous one. Here C' and D have a matching block
diagonal form. Therefore, Y] is a block diagonal matrix, whereas z3, Er are just vectors. Again,
the small systems have multiple right-hand sides. This time, however, the square blocks of D
have variable sizes from 0 X 0 to J,m X Jmin-
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Using this notation, our transformed system reads

(42) [A— By -1 Agém = _Gf +et— B - [y2 + ys]
(44) Aoy = —x5— X1 AL — Xy AR

Through this transformation of the original system (32), we could exploit especially the struc-
ture of D and its submatrices, which would have been unused otherwise.

Since By is sparse and Y is block diagonal, the product B - Y] again is sparse. Its structure
is similar to the structure of A. Therefore, the matrix A — B; - Y] in the linear system (42) is
sparse, too. It can be solved by a linear solver like GMRES.

Finally, it should be mentioned that we really have only one Newton-type algorithm and
that is the one which was introduced in Algorithm 1. The Schur-complement approach and
the simplifications in (32) and (33) are only different ways to solve the resulting linear systems
efficiently.

8. NUMERICAL EXAMPLE

The reactive transport problem introduced in Section 2 was implemented in two versions
using MATLAB®. One version uses the Schur-complement approach from Section 7, whereas
the other version utilizes the whole system (25) with the special element J € 0pG.

For both versions, the discretization of the PDE-operator was done via the same difference
scheme of second order. Both versions have to solve the same a priori linear decoupled system,
the discretization of (16). This is done through a GMRES iteration in both implementations,
since it is a sparse system. In practice, this seems to work very well for this particular linear
system. Usually only 2 or 3 steps are needed to calculate a sufficiently accurate solution. Thus
we will focus on the Newton iteration.

In our test example (taken from [10]), the interaction of CO5 with minerals is considered. In
these days, we are facing the global warming of the earth which is at least partly due to the
COs-concentration in the atmosphere. Therefore, techniques have been investigated to inject
COy into the subsurface. The long term storage of CO5 beneath the surface of our planet is
the desired goal. This might be more likely if the carbon precipitates would form minerals than
the carbon being dissolved in the ground water.

We use the following generic simplified set of chemical reactions to model the desired mech-
anism:

coY + H,0 £ HCO; +HT
Calcite + HY £, Ca?t + HCO;

Min A+ 3HY &5 Me*t + Si0l?
Min B+ 2HT % Me*™ + HCO;

It consists of 3 minerals (calcite and mineral B are carbonates, mineral A is a silicate) and
6 species which are dissolved in the ground water and one aqueous tracer. More details and
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insights for this example, especially its internal functionality, can be found in [10, Subsection
4.5.2].

The technical details for this example are: domain Q = (0,10) x (0,6), Darcy veloc-
ity ¢ = (0.015,0)", water content § = 0.3, (i.e. pore velocity ||g|| /0 = 0.05), longitudi-
nal /transversal dispersion length (ﬁl,ﬂt)T = (O.B,O.OB)T, time step size 7 = 0.1. The equi-
librium constant of the first reaction is K; = 0.1, where the activity of HyO is already incor-
porated; i.e. CH+CHCOE/CCOZ = 0.1. The solubility products of the three mineral reactions
are K, = 100, K3 = 10, K, = 1.25; i.e. cca2+cHCO§/cH+ = 100 (if coaeite > 0), etc. The
initial values are cco, = CHeo; = CSiCOy = 1, cg+ = 0.1, cpres+ = 0.01, cogz+ = 10 (constant
within €2), and ¢4 = 0.2 for © > 6, cogeire = 0.2 for 1 < x < 6, and zero else. The Dirich-
let boundary values for the mobile species are coo, = 3.787, cy+ = 0.3124,CH003— = 1.212,
cuer+ = 0.01, csio, = 1, coqz+ = 10 on {0} x [1.5,4.5], whereas we use the initial values on
(0,y) with y < 1.5, y > 4.5. For the other three borders, the homogeneous Neumann boundary
condition is given.

In the following calculation, we set the spatial and the time step to h = 7 = 0.1. With this
setting, we get 6100 grid nodes for an equidistant quadratic grid. The discretization was done
via a second-order finite difference method. With the Schur complement implementation we
calculate the resulting concentrations for the 10 species for 3600 time steps, i.e. a time span of
360 seconds. The results have been checked to match the results from [10].

Figures 1 3 visualize the numerical results. Note that the differences to the results given in
[10] are only due to a different color scaling. There is a slow water flow in horizontal direction
from the left to the right. With it enters dissolved COs into the computational domain. This
decreases the pH value (the negative common logarithm of the concentration of HY ions in the
water). The water stream of low pH value dissolves Mineral A and Calcite, when it reaches
those areas. Moreover, the dissolution of Mineral A leads to an immediate precipitation of
Mineral B.

Table 1 shows the quadratic convergence for both implementations of our Newton-type meth-
ods as predicted in the previous theory. The third column contains the errors of the Schur
complement method, whereas the fourth column gives the errors of the full Jacobian method.
The good consistency of these errors shows that these two methods realize the same Newton
method where only the linear systems are solved differently. Usually these two methods need
the same number of Newton iterations to get below the termination condition of 2- 1075, With
time step size 7 = 0.1, they both need almost always only two Newton iterations after about
10 time iterations.

In Table 2 we compare the linear systems which arise in these two methods. Both of these
sparse systems are solved with the GMRES(30) method. The numbers in the last two columns
show the total number of inner GMRES iterations which are needed in both methods. The
fifth and sixth columns display the condition numbers of the linear systems of both methods.
Finally, we present in the third and fourth columns the dimensions of these linear systems.
Of course, the linear system of the full Jacobian method has always the same size, since the
arising Jacobians always stem from the same function. While the linear system of the Schur
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FIGURE 1. Results obtained after ¢ = 0.4 seconds. (The graphics are com-

pressed by a factor 1.5 in vertical direction.)
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t =120 Mineral A
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FIGURE 2. Results obtained after t = 120 seconds. (The graphics are com-
pressed by a factor 1.5 in vertical direction.)
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FIGURE 3. Results obtained after t = 280 seconds. (The graphics are com-
pressed by a factor 1.5 in vertical direction.)
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time step | iteration | method Schur:||G (2)||, | method full:|G (2)]|,
1 0 3.1753 - 10° 3.1753 - 10V
1 2.7353 - 10° 2.3026 - 1071
2 1.6990 - 1072 6.2355 - 1073
3 2.9673 - 1073 2.3402 - 1076
4 5.2980 - 1077 3.9298 - 107°
2 0 1.8504 - 10° 1.8504 - 10°
1 3.3186- 1072 3.3186 - 1072
2 6.9773 - 1074 6.9771 - 1074
3 2.9498 - 1078 4.2795- 1078
3 0 1.4602 - 10° 1.4602 - 10°
1 2.1604 - 102 2.1604 - 1072
2 1.0084 - 10~ 1.0084 - 101
3 5.9014 - 10710 4.4814-107°
8 0 8.1019- 1071 8.1019- 1071
1 5.4402 - 1073 5.4403 - 1073
2 1.1288-10°¢ 1.1334-10°¢
3 7.4144 1074 1.4089 - 107
18 0 5.0502 - 1071 5.0502 - 1071
1 1.7743-1073 1.7743 -1073
2 1.0200 - 1077 3.0794 - 1077

TABLE 1. Comparison of errors
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complement approach is not the Jacobian of G itself but only a reordered submatrix, whose
size depends on the size of the active set.

In this table, we have only listed three time steps since the displayed tendencies always
remain unchanged. The Schur complement linear system is almost always four times smaller
then the full Jacobian linear system (in the number of rows and in the number of columns).
Furthermore, its condition number is usually smaller than 3, while the condition number of the
full Jacobian is typically more than 1000 times greater. The last two columns show that the
full Jacobian method needs much more total GMRES iterations than the Schur complement
method except for the first linear system in each time step.

9. FINAL REMARKS

We have investigated and implemented a solution procedure for reactive transport problems
including equilibrium mineral precipitation-dissolution reactions. While currently in the geo-
scientists’ community often strategies which are time consuming |2, 3| or which are of limited
practical applicability [13] are used, our intention was to apply modern mathematical strategies
to this problem. We avoid operator splitting techniques because of their well-known potential
disadvantages. The PDE-ODE-AE-CC system is solved with the semismooth Newton method.
We have shown that this semismooth Newton method is typically quadratically convergent, and
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time step | iteration || size Schur | size full || cond. cond. full Schur full
Schur GMRes | GMRes
itera- itera-
tions tions
1 0 9628 42700 2.8497 3.9813-10° || 4 4
1 10070 42700 2.9073 3.9812-10% || 5 85
2 10116 42700 2.8551 4.0279-10% || 5 68
3 10161 42700 2.8551 3.9812-10% || 5 64
4 10167 2.8551 5
2 0 9670 42700 2.8497 3.9812-10% || 4 4
1 10142 42700 2.8554 4.0278 -10% || 5 90
2 10180 42700 2.8554 3.9860 - 103 || 5 98
3 10180 42700 2.8554 4.0278-10% || 5 70
3 0 9677 42700 2.9272 4.0273-10° || 4 4
1 10156 42700 2.9549 4.0273-10% || 5 85
2 10200 42700 2.9549 4.0278-10% || 5 99
3 10200 42700 2.9549 4.0276 - 10% || 5 90

TABLE 2. comparison of the arising linear systems

have confirmed this by our numerical test runs. Compared to other solvers, our implementation
keeps the number of unknowns small, first by using the reformulation/decoupling technique of
Sec. 3, and second by using a particular Schur complement technique which exploits the special
structure of the resulting linear systems of equations.

The geat reduction of the condition number of the Schur complement approach compared to
the full system is an interesting observation in our numerical test runs. A theoretical explanation
is currently under investigation.

10. APPENDIX

The following result was used in Section 6. The result itself can be found in [5, p. 60| but
without proof. Since we are not aware of an explicit reference containing the proof, we give the
details here.

Lemma 2. Let B, D € R™"™ with D being a diagonal matriz, and let M = D + B. Then

det M = Z det Da,a ° det Bo_z,o_z )

aCl

where I :={1,...,n},a:=1\ «a denotes the complement of o C I, and where the determinant
of a 0 x 0 matriz is 1.

Proof. The proof is by induction on n.
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Let n = 1. Then M, B, D are real numbers and the determinant is a linear mapping.

Therefore it holds
det M = det D + det B = det D{1}7{1} - det Bq)y) + det qu - det B{l},{l} .
Now assume the statement holds for all matrices of dimension n x n and let B, D € R(»+1D)x(n+1)
with D diagonal and M := D+ B. Here we need some specific notation. Let B; := B ; with J =
{1,...,n+ 1}\ {i}. This is the matrix that emerges from B by cancelling the i-th column and
row. Let M; be defined in an analogous way. Furthermore let D; := diag(0,...,0,d;11,...,dps1)
N——

i1
be the matrix that evolves from D = diag(d;,ds,...,d,+1) by discarding the i-th row and
column and setting the first 4 — 1 diagonal entries to zero. With d* and b* we denote the i-
th column of D and B, respectively. Because of the linearity of the determinant in the first
column, we then get

det M = det[d' +b",d>+ V... .d""" + 0]
det [d',d* + V%, ..., d"™ + "] 4 det [b', d® + 0%, ... d"TH + 0"
= dy-det My +det [b',d® + 0%, ... " + "]

where the last equation follows by expanding the determinant in the first column. We repeat
this procedure and get

det M = dy-det My +det [b',d* + 0%, ..., d""" + "]
= dy -det (D1 + B1) + ds - det (D5 + By)
+det [0, 0%, d® + 0%, ... A"+ 07T
Now we iterate this and eventually get
n+1
(45) det M =" d; - det (D; + B;) + det B.
=1

Note that D; and B; are n X n matrices. Hence we can apply the induction hypothesis to obtain

di - det (Dg + BZ) = dz ' Z det (Dﬁa,a - det (Bi)d7_

(e}

aC{1,...,n}
= d;- Y det(Dy),, - det(Bi),, .
aC{i,...,n}

where the last equation holds because of the definition of D;. Now it is not difficult to see that,
given any ¢ € {1,...,n+ 1}, we have

d; - det (D; + B;) = > det D - det Ba g
ica,aC{i,i4+1,...,n+1}

since ¢ € o guarantees, on the one hand, that d; is always on the diagonal of D, ,, and, on the
other hand, that the index ¢ does not belong to & so that we can replace B; by B. Now we can
insert this result in (45) and get
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n+1
det M = Z Z det Dy o -det Bsg| +det B.

=1 |ica,aC{i,i+1,....,n+1}

Now it holds that U™ ! {i € a, o C {4,i +1,...,n+ 1}} equals the power set of {1,2,...,n 4 1}
off the empty set. Furthermore, for different i, two sets {i € o, « C {i,i+1,...,n+1}} do
not have an intersection. Therefore o runs through every subset of {1,2,...,n + 1} once except
for the empty set. But for the empty set, we have

det Dy g - det B@@ =detB.

Hence we obtain

det M = " det Dy q - det Baa,

witha C {1,...,n+ 1} and @ := {1,...,n+ 1} \ . That is exactly our assertion for n+1. [
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