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Abstra
t. The modeling of rea
tive transport in the subsurfa
e in
ludingmineral pre
ipitation-dissolution rea
tions involves a 
oupling of PDEs, ODEs, and algebrai
 equations to inequalities.In the geos
ientists' 
ommunity, the most frequently used algorithms to solve these kinds of sys-tems apply some kind of trial-and-error strategies. The aim of this arti
le is to apply a modernand e�
ient solution strategy, the semismooth Newton method, to this geos
ienti�
 problem,and to investigate its appli
ability and e�
ien
y both from a theoreti
al and a numeri
al pointof view. In parti
ular, it turns out that the method is typi
ally quadrati
ally 
onvergent.Key Words: rea
tive transport, mineral pre
ipitation-dissolution, 
omplementarity problems,semismooth Newton method, quadrati
 
onvergen
e



11. Introdu
tionThe modeling of rea
tive transport problems in porous media leads to systems 
ontainingpartial di�erential equations (PDEs) and ordinary di�erential equations (ODEs); the PDEsfor the 
on
entration of spe
ies whi
h are dissolved in the water (mobile), and the ODEs forthe 
on
entration of spe
ies whi
h are atta
hed to the soil matrix (immobile). The immobilespe
ies 
an be sorbed spe
ies or minerals. If the rea
tions are su�
iently fast, then the as-sumption of lo
al equilibrium is reasonable. This equilibrium is usually des
ribed by a set of(nonlinear) algebrai
 equations (AEs) 
oupling the PDEs and the ODEs. However, the equi-librium des
ription only by AEs is no longer valid when rea
tions with minerals are involved.In this situation, the equilibrium des
ription of the mineral pre
ipitation-dissolution rea
tionshas to take into a

ount two possibilities for equilibrium: the 
ase of a saturated �uid, andthe 
ase of a 
omplete dissolution of the mineral (see Se
. 2). Su
h an equilibrium 
ondition
an be expressed by using a 
ombination of equations and inequalities, having the shape ofa (nonlinear) 
omplementarity problem. The resulting system 
onsists of PDEs, ODEs, AEs,and 
omplementarity 
onditions (CCs).For the numeri
al solution, many publi
ations on rea
tive transport in porous media suggestto enfor
e a de
oupling between transport and rea
tion by applying an operator splitting te
h-nique. By this, the rea
tion subproblem is fully lo
al, i.e., it 
onsists only of AEs and CCs,while only the transport subproblem 
ontains the PDEs and ODEs. However, operator splittingeither introdu
es splitting errors or requires a �xed-point type iteration between transport andrea
tion within ea
h time step. In the �rst 
ase, a

ura
y 
onsiderations, and in the se
ond
ase, 
onvergen
e issues often lead to severe time step restri
tions for splitting methods.A very popular way to handle the PDE-ODE-AE-CC system in 
omputational geos
ien
es isthe following [2, 3℄: For the 
urrent time step, for ea
h mineral and ea
h dis
retization point, anassumption is made (usually based on the previous time step) whether saturation or 
ompletedissolution will hold. Under this assumption, a Newton iteration is performed. If the resulthas no physi
al meaning (negative mineral 
on
entration, or supersaturated �uid), then theassumptions are modi�ed in some way and the Newton iteration is repeated, until (hopefully) aphysi
ally meaningful solution is obtained. Besides its heuristi
 motivation, another drawba
kof this pro
edure is that the CPU time required is signi�
antly higher than for rea
tive transportproblems without minerals, sin
e several Newton iterations are required per time step. The la
kof e�
ien
y be
omes even more troublesome if fully impli
it methods (avoiding the splittingof transport and rea
tions) are 
onsidered, sin
e systems 
ontaining PDEs have to be solvedagain and again.Other authors from the geos
ien
es 
ommunity propose to use a formulation as a free bound-ary problem for front tra
king approa
hes [13℄. However, this approa
h la
ks simpli
ity assoon as more than one spa
e dimension is involved and topology 
hanges of the pre
ipitation-dissolution fronts appear. Another approa
h is to approximate the equilibrium, i.e., very fastrea
tions, by a kineti
 des
ription with large rate 
oe�
ients. Besides the approximative natureof this approa
h, large rate 
oe�
ients may in
rease the sti�ness of the problem to solve.Modern te
hniques from the optimization theory for the rea
tive transport problem are 
on-sidered in [17, 18℄ and in [10℄. In [17, 18℄, an operator splitting is performed, and the now fully



2lo
al rea
tion problem is repla
ed by an equivalent 
onstrained minimization problem for theso-
alled Gibbs free energy. Its KKT 
onditions are solved with an interior-point algorithm.Numeri
al test runs are performed without any deeper theoreti
al investigation. Note thatthis pro
edure leads to additional unknowns, the Lagrange multipliers for the equality andinequality 
onstraints.In [10, Se
. 4℄, to our knowledge for the �rst time, the appli
ation of a semismooth Newtonmethod to the rea
tive transport mineral pre
ipitation-dissolution problem is 
arried out. Therethe rea
tive transport problem is ta
kled fully impli
it, avoiding any operator splitting. Theauthor 
onsiders a rather general situation of rea
tive problems in
luding equilibrium andkineti
 rea
tions, where the equilibrium rea
tions may be of the aqueous, the sorption, or themineral pre
ipitation-dissolution type. The implementation of the solution strategy is des
ribedand some results on the nonsingularity of the Ja
obian of the system are given.The following arti
le propagates and investigates similar solution strategies as in [10℄, but itfo
usses on those rea
tive systems without kineti
 rea
tions, and where all the (equilibrium)rea
tions are of aquati
 and of mineral type, i.e., no sorption is involved. This restri
tion allowsto prove stronger theoreti
al results. The stru
ture of the arti
le is the following: In Se
. 2the problem is formulated and its mathemati
al model is given. Se
. 3 
ontains an equivalen
etransformation (going ba
k to [11, 12, 10℄) being applied to the PDE-ODE-AE-CC system. Themotivation for this reformulation is a de
oupling of some (linear) PDEs, leading to a smallernonlinear system. The resulting dis
retized system is a mixed 
omplementarity problem that
an be reformulated as a nonlinear (but nonsmooth) system of equations. The theoreti
al prop-erties of this nonsmooth system of equations will be investigated in the subsequent se
tions,
f. Se
. 4�7. In parti
ular, it is shown that a nonsmooth (semismooth) Newton-type methodapplied to this system is (usually) lo
ally quadrati
ally 
onvergent sin
e the resulting (gener-alized) Ja
obian has no inherent singularity properties. Se
. 8 gives some numeri
al results forthe semismooth Newton method applied to a spe
ial instan
e of our problem, and we 
lose withsome �nal remarks in Se
. 9. 2. Problem FormulationThis se
tion gives a pre
ise formulation of the mathemati
al model for the appli
ation thatwas outlined in the introdu
tion. This formulation will be the basis for our subsequent theo-reti
al and numeri
al investigations.To this end, let us 
onsider the 
on
entrations of I mobile spe
ies c = (c1, c2, . . . , cI)
T . Thesespe
ies are dissolved in the groundwater. Their 
on
entrations are time- and spa
e-dependent.They are 
onve
ted by a given Dar
y �ow �eld q and are subje
t to dispersion. The 
onve
tion-di�usion operator for these spe
ies is given by

Lici = −∇ · (D∇ci − qci) , i = 1, . . . , I,with dispersion tensor D = D(q) whi
h depends on the �ow �eld q. Clearly, this operator
L = (L1, . . . , LI)

T is linear and a
ts in the same way on all mobile spe
ies, i.e. L1 = · · · = LI .The 
onstant θ ∈ (0, 1) denotes the fra
tion of the mobile �uid-phase volume. With c̄ =

(c̄I+1, . . . , c̄I+Ī)
T we denote the 
on
entrations of the Ī mineral spe
ies. These 
on
entrations



3are also variable in time and spa
e. They are atta
hed to the soil matrix and therefore neithersubje
t to 
onve
tion nor di�usion. But they are like the mobile spe
ies involved in 
hemi
alrea
tions with other mobile or mineral spe
ies. In this paper we restri
t ourselves to equilibriumrea
tions, i.e. rea
tions that are a
tually in the 
ondition of equilibrium or equations whi
h aresu�
iently fast to be approximately 
onsidered to be in equilibrium. R = (R1, . . . , RJ) denotesthe ve
tor of rea
tion rates that are ne
essary to keep the 
hemi
al system in equilibrium.Together with c and c̄ they form the unknowns of the system to be 
onsidered here.The I + Ī mass balan
e equations are
∂

∂t
θc + Lc = S1R ,

∂

∂t
c̄ = S2R ,(1)given on the domain [0, T ]×Ω ⊂ R

2 or R
3 together with given initial and boundary 
onditions.The matrix (sij) = S =

(
S1

S2

)

∈ R
(I+Ī)×J is the matrix of stoi
hiometri
 
oe�
ients, where

J is the number of 
hemi
al rea
tions. If we have, for example, an equilibrium rea
tion
X1 + 2X2 ←→ X3we shift all spe
ies to the right side

0←→ −X1 − 2X2 + X3and get a 
olumn of matrix S with entries −1,−2, 1 in the 
orresponding positions. It is wellknown that any linear dependen
e of the 
hemi
al rea
tions (i.e. the 
olumns of S) indi
ates aredundan
y of 
hemi
al rea
tions [1℄. Hen
e, without loss of generality, we 
an assume that Shas full 
olumn rank,(2) rank (S) = J .Additionally, we demand that the 
olumns of S1 are linearly independent(3) rank (S1) = J .Furthermore, we assume that ea
h mineral is parti
ipating in one and only one mineral rea
tion,and that in ea
h mineral rea
tion, exa
tly one mineral is involved. Hen
e, in this paper, amineral rea
tion is a rea
tion with one mineral and one or more mobile spe
ies involved. Withmobile rea
tions we indi
ate rea
tions in whi
h only mobile spe
ies parti
ipate. By Jmob wedenote the number of mobile rea
tions and with Jmin the number of mineral rea
tions. Itfollows that Jmin = Ī. Sin
e in our model we have only mineral or mobile rea
tions, it holds
J = Jmob + Jmin. The stoi
hiometri
 matrix then reads

S =

(
S1

S2

)

=

(
S1

mob S1
min

0 −I

)

, with S1
mob ∈ R

I×Jmob, S1
min ∈ R

I×Jmin ,where, for simpli
ity of notation, we have repla
ed the diagonal matrix representing the mineralparti
ipation in the mineral rea
tions by −I, the negative identity matrix. Therefore, rea
tions
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1, . . . , Jmob are mobile and rea
tions Jmob +1, . . . , J are mineral, be
ause the 
olumns of S referto 
hemi
al rea
tions.The equilibrium 
onditions for the rea
tions not involving minerals are modeled by algebrai
equations(4) I∏

i=1

c
si,j

i − kj = 0 (j = 1, . . . , Jmob) ,where kj are given 
onstants. They hold in ea
h point of spa
e and time. Sin
e we expe
t thesolutions to be positive, equation (4) 
an equivalently be written as
Qj (c) :=

I∑

i=1

si,j · ln ci − ln kj = 0 (j = 1, . . . , Jmob) .In matrix notation, the ve
tor Qmob = (Q1, Q2, . . . , QJmob
) then be
omes

Qmob (c) =
(
S1

mob

)T
ln c−K1 ,where K1 = (ln k1, . . . , ln kJmob

)T is the ve
tor of equilibrium 
onstants in logarithmi
 form and
ln c is a ve
tor where the logarithm is applied separately to every 
omponent of the ve
tor c.For the mineral equilibrium rea
tions, we have the 
omplementary 
onditions

Ej (c) · c̄j = 0 ∧ c̄j ≥ 0 ∧ Ej (c) ≥ 0 (j = Jmob + 1, . . . , J) ,where Ej (c) := ln kj −
∑I

i=1 si,j · ln ci. The 
ase Ej(c) = 0, c̄j ≥ 0 
orresponds to a saturationof the �uid with respe
t to this mineral rea
tion, and the 
ase Ej(c) ≥ 0, c̄j = 0 
orrespondsto the total dissolution of the mineral and an undersaturation of the �uid. Again we 
an write
E = (EJmob+1, . . . , EJ)T in matrix notation as

E (c) = K2 −
(
S1

min

)T
ln cwith K2 = (ln kJmob+1, . . . , ln kJ)T . The 
onstant 1/K2 (
omponentwise) is the so-
alled solu-bility produ
t.We de
ompose the rea
tion ve
tor R into

R =

(
Rmob

Rmin

)



5with Rmob and Rmin being of size Jmob and Jmin, respe
tively. Utilizing the stru
ture of S, thefull system reads
∂

∂t
θc + Lc = S1

mobRmob + S1
minRmin = S1R ,(5)

∂

∂t
c̄ = −Rmin ,(6)

Ej (c) · c̄j = 0 (j = Jmob + 1, . . . , J) ,(7)
c̄j ≥ 0 (j = Jmob + 1, . . . , J) ,(8)

Ej (c) ≥ 0 (j = Jmob + 1, . . . , J) ,(9)
Qmob (c) = 0 ,(10)for the I + Ī + J unknowns c, c̄ and R. Note that this is a di�erential-algebrai
 system ofordinary and partial di�erential equations 
oupled with 
omplementary 
onditions arising fromthe mineral equilibrium rea
tions.3. De
oupling and reformulation of the 
omplementary 
onditionsThe aim of this se
tion is to redu
e the size of the overall system (5)�(10) by using suitablede
ouplings and reformulations. Sin
e these te
hniques are already known from [11, 12℄ (butstri
tly needed for our subsequent analysis), we will keep this se
tion as short as possible.First, we apply the de
oupling te
hnique proposed in [11, 12℄ to the PDE-ODE system (5)�(6). This will lead to a de
oupling of some linear PDEs. The remaining PDE-system willthen be signi�
antly smaller than the original PDE-system. To this end, we de�ne S⊥

1 as amatrix 
onsisting of a maximum set of linearly independent 
olumns that are orthogonal to ea
h
olumn of S1, i.e. (S1)
T S⊥

1 = 0. Re
all that the 
olumns of S1 were assumed to be linearlyindependent, 
f. (3). Hen
e the pseudo-inverses of S1 and S⊥
1 are given by (ST

1 S1

)−1
ST

1 and
( (

S⊥
1

)T
S⊥

1

)−1 (
S⊥

1

)T , respe
tively. Multiplying (5) with these two pseudo-inverses, we obtain
((

S⊥
1

)T
S⊥

1

)−1 (
S⊥

1

)T
(

∂

∂t
θc + Lc

)

= 0 ,(11)
(
ST

1 S1

)−1
ST

1

(
∂

∂t
θc + Lc

)

= R ,(12)
∂

∂t
c̄ = −Rmin .(13)We now substitute(14) η :=

((
S⊥

1

)T
S⊥

1

)−1 (
S⊥

1

)T
c, ξ :=

(
ST

1 S1

)−1
ST

1 c,and partition the ve
tor ξ into
ξ = (ξmob, ξmin)



6of size Jmob, Jmin. Then splitting equation (12) into two parts and adding the third blo
k tothe se
ond part, we get
∂

∂t
θη + Lη = 0 ,

∂

∂t
θξmob + Lξmob = Rmob ,

∂

∂t
(θξmin + c̄) + Lξmin = 0 ,

∂

∂t
c̄ = −Rmin .We may 
onsider the se
ond and fourth equations as a de�nition for Rmin resp. Rmob. Sin
ewe are not dire
tly interested in R, we drop both equations (but 
an use them to 
ompute Ra posteriori).It is well known that 
omplementary 
onditions 
an be expressed equivalently via NCP-fun
tions, also 
alled C-fun
tions, 
f. [6, 7℄. Let ϕ (a, b) = min {a, b} be the minimum fun
tion.This fun
tion is an NCP-fun
tion, i.e. it has the de�ning property that

ϕ (a, b) = 0 ⇐⇒ a ≥ 0 , b ≥ 0, a · b = 0 .Using this minimum fun
tion, we 
an write the 
omplementary 
onditions (7)�(9) as
ϕ (Ej (c) , c̄j) = 0 (j = 1, . . . , Jmin) .In ve
tor notation, this be
omes(15) ϕ (E (c) , c̄) = 0 ,where ϕ is applied to ea
h 
omponent of E (c) and c̄.The resulting system now reads

∂

∂t
θη + Lη = 0 ,(16)

∂

∂t
(θξmin + c̄) + Lξmin = 0 ,(17)

−ϕ (E (c) , c̄) = 0 ,(18)
Qmob (c) = 0 ,(19)where c 
an be represented as(20) c = c (ξmin, ξmob, η) = S1

min · ξmin + S1
mob · ξmob + S⊥

1 η,
f. (14). Note that (16) is now linear with respe
t to η and it is de
oupled from the otherequations (η is not 
ontained in the other equations). The remaining nonlinearly 
oupledsystem (17)�(19) is redu
ed in size from I + J + Jmin rows to I + Jmin rows 
ompared to theoriginal system (5)�(10). Together with the size redu
tion of J rows, the J unknowns R 
ouldbe dropped. They 
an be 
omputed a posteriori. We now dis
retize the system in spa
e andtime. To keep the notation simple, we suppress subs
ripts indi
ating the dis
retization (ex
eptwe denote Lh as the dis
retization of L). For the sake of simpli
ity, we assume the impli
it



7Euler time stepping s
heme. We further mention that equation (16) in its dis
retized version
an be solved for η dire
tly (say, by a linear system solver like GMRES). Hen
e η is not viewedas a variable any longer. We therefore write c = c (ξmin, ξmob) for the dis
retized fun
tion c.The remaining dis
rete system in the variables (ξmin, ξmob, c̄) then reads
G1 := θξmin + c̄ + τLhξmin − θξold

min − c̄old = 0 ,(21)
G2 := −ϕ (E (c (ξmin, ξmob)) , c̄) = 0 ,(22)
G3 := Qmob (c (ξmin, ξmob)) = 0 .(23)The supers
ript 'old' indi
ates the previous time-step. The time-step size is τ . We assume thedomain Ω has been dis
retized into the grid set Ωh with |Ωh| grid points. Then ξmin, ξmob, c̄ areve
tors with Jmin · |Ωh| , Jmob · |Ωh| , Jmin · |Ωh| 
omponents. These ve
tors are 
on
atenations ofthe fun
tion values in every node of the grid. Lh is a linear mapping whi
h is the dis
retizationof the PDE operator L. In (22) and (23), the fun
tions Qmob, ϕ, E, c are to be applied to (thedis
retizations of) ξmin, ξmob, c̄ in every node separately. For example, a more detailed way torepresent c (ξmin, ξmob) is

c (ξmin, ξmob) =

[

c
(
ξ1
min, ξ

1
mob

)T
, c
(
ξ2
min, ξ

2
mob

)T
, . . . , c

(

ξ
|Ωh|
min , ξ

|Ωh|
mob

)T
]T

,where ξi
min, ξ

i
mob are our variables in one grid point. For the sake of simpli
ity, we de�ne theabbreviations

Ẽ (ξmin, ξmob) := E (c (ξmin, ξmob)) ,

Q̃mob (ξmin, ξmob) := Qmob (c (ξmin, ξmob)) .Let
G =





G1

G2

G3



 .Then we have to solve the nonlinear system of equations
G (ξmin, ξmob, c̄) = 0 .Note that this is a nonsmooth system due to the de�nition of G2 via the minimum fun
tion.4. The Generalized Ja
obian and Semismooth Fun
tionsIn this se
tion, we will shortly review the de�nition for the generalized Ja
obian and introdu
ean interesting result 
on
erning the ve
tor �eld G. More detailed statements and examples 
anbe found in [4, 6, 7, 14, 15, 16℄.De�nition 1. Let F : R

n −→ R
m be lo
ally Lips
hitz 
ontinuous and w ∈ R

n be arbitrarilygiven. Let DF ⊂ R
n be the set of di�erentiable points of F . Then the set

∂BF (w) :=
{
H ∈ R

m×n | ∃ {wk} ⊆ DF , wk −→ w and JF (wk) −→ H
}is 
alled the B-subdi�erential of F in w, where JF is the Ja
obian of F . The 
onvex hull

∂F (w) := conv (∂BF (w))



8is Clarke's generalized Ja
obian of F in w. Finally, the C-subdi�erential is de�ned by
∂CF (w) :=

(

∂F1 (w)T × ∂F2 (w)T × · · · × ∂Fm (w)T
)T

.If m = 1 then ∂F (w) is also 
alled the generalized gradient of F . Note that if F is 
ontinuouslydi�erentiable in a neighborhood of w, both sets ∂F (w) and ∂BF (w) 
ontain the Ja
obian of
F as their only element.Note that ∂F (w) ⊆ ∂CF (w) always holds . The C-subdi�erential of F 
an be 
omputedvery easily, whi
h is often not the 
ase for the generalized Ja
obian of F . Sin
e conv (A× B) =
conv (A) × conv (B) for any sets A, B, it follows that the C-subdi�erential 
an also be repre-sented as(24) ∂CF (w) = conv

((

∂BF1 (w)T × ∂BF2 (w)T × · · · × ∂BFm (w)T
)T
)

.Now let G be the mapping from the previous 
hapter. Ea
h part Gi (i = 1, 2, 3) of G is itself amultidimensional mapping. With Gi,j we denote the 
omponents of the mapping Gi(i = 1, 2, 3).Lemma 1. Let G be the nonlinear mapping that was introdu
ed in (21)�(23) and let p := |Ωh|,say Ωh = {x1, x2, . . . , xp}. Furthermore, let w = (ξmin, ξmob, c̄) be an arbitrary element of
R

Jmin·p × R
Jmob·p × R

Jmin·p with 
omponents ξmin =
(

ξmin (x1)
T , ξmin (x2)

T , . . . , ξmin (xp)
T
)Tand ξmob, c̄ de�ned in a similar way. Suppose that c (ξmin, ξmob) > 0 
omponentwise. Then thefollowing statements hold:(1) The B-subdi�erential of G 
an be written as the 
ross produ
t

∂BG (w) = ∂BG1 (w)× ∂BG2 (w)× ∂BG3 (w)with ∂BG1 (w) = {JG1(w)} and ∂BG3 (w) = {JG3(w)}, where JG1 and JG3 are theJa
obians of G1 and G3, respe
tively.(2) The B-subdi�erential of G2 
an be broken down into
∂BG2 (w) = ∂BG2 (w1)× ∂BG2 (w2)× . . .× ∂BG2 (wp) ,where wi = (ξmin (xi) , ξmob (xi) , c̄ (xi)).(3) Let xi ∈ Ωh, a = (ξmin (xi) , ξmob (xi)) and b = c̄ (xi). Then we have

∂BG2 (wi) = −∂Bϕ
(

Ẽ1(a), b1

)

×−∂Bϕ
(

Ẽ2(a), b2

)

× . . .×−∂Bϕ
(

ẼĪ(a), bĪ

)

.(4) Let xi, a and b be as before. Then
∂Bϕ

(

Ẽj(a), bj

)

=







{(
∂Ẽj(a)

∂ξmin
,

∂Ẽj(a)

∂ξmob
, 0
)

,
(
0, 0, eT

l

)}

, if Ẽj(a) = bj ,
{(

0, 0, eT
l

)}
, if Ẽj(a) > bj ,{(

∂Ẽj(a)

∂ξmin
,

∂Ẽj(a)

∂ξmob
, 0
)}

, if Ẽj(a) < bj ,where el is a unit ve
tor, with all 
omponents vanishing and 
omponent l = i · Jmin + jbeing one.



9Proof. It is easy to see that G is lo
ally Lips
hitz 
ontinuous, sin
e G1, G3 and Ẽ are 
ontinu-ously di�erentiable and the minimum fun
tion ϕ is (globally) Lips
hitz 
ontinuous.(1) This statement follows dire
tly from the observation that the two blo
k 
omponents G1 and
G3 are 
ontinuously di�erentiable, so that ∂BG1(w) = {JG1(w)} and ∂BG3(w) = {JG3(w)}.(2+3) These two statements are dire
t 
onsequen
es of the de�nition of the 
orresponding B-subdi�erentials, taking into a

ount that the se
ond argument c̄ of the NCP-fun
tion ϕ 
anvary independently in every 
omponent. Note that statement (2) expresses the B-subdi�erential
∂BG2(w) as a Cartesian produ
t of the B-subdi�erentials at ea
h of the p ve
tors wi (whi
hitself is still a ve
tor in R

Jmin for all i = 1, . . . , p), whereas statement (3) gives the stru
ture ofthe B-subdi�erentials for ea
h of these blo
k 
omponents.(4) The two 
ases Ẽj(a) > bj and Ẽj(a) < bj are obvious sin
e ϕ is 
ontinuously di�erentiablein these 
ases, so that the B-subdi�erential redu
es to the existing gradient whi
h 
an be
al
ulated dire
tly from (22). The remaining 
ase Ẽj(a) = bj 
an be veri�ed by 
hoosingsuitable sequen
es {bk} 
onverging to b. �Note the fa
t that G1 and G3 are 
ontinuously di�erentiable means that their B-subdi�erentialequals the 
ross produ
t of the B-subdi�erential of their 
omponents. Therefore, an immediate
onsequen
e of this lemma and (24) is the followingCorollary 1. Let G be the nonlinear mapping that was introdu
ed in (21)�(23), and let w =

(ξmin, ξmob, c̄) be an arbitrary element of R
Jmin·|Ωh| ×R

Jmob·|Ωh| ×R
Jmin·|Ωh|
+ . Then it holds

∂G(w) = ∂CG(w) .5. Newton's Method and A
tive Set StrategyHere we des
ribe our Newton-type method applied to the nonlinear system of equations(21)�(23) and its relation to an a
tive-set strategy. Some parts of this se
tion is taken fromthe Habilitation Thesis [10℄, whereas the relationship between our Newton-type method andan a
tive set strategy is, in prin
iple, known [8, 9℄, although it has not been dis
ussed withinour 
ontext. The formulas to be derived in this se
tion will, in parti
ular, be needed in thesubsequent se
tions.The linearization of (21)�(23) via Newton's method leads to the linear system(25) H





∆ξmin

∆ξmob

∆c̄



 = −





G1

G2

G3



 ,with H ∈ ∂BG(w). Re
all that G is not di�erentiable everywhere due to the nondi�erentiabilityof the minimum fun
tion ϕ. In the points where G is (
ontinuously) di�erentiable, H 
oin
ideswith the Ja
obian of G and the formula above is equal to the formula of the 
lassi
al Newton



10method. For the non-di�erentiable 
ase, we have repla
ed the Ja
obian in a suitable way fol-lowing the theory of the semismooth Newton method from [15℄, see also [6, 7, 16, 14℄ for relatedmaterial. In the following, we will 
onstru
t one parti
ular element of the B-subdi�erential of
G at w. The 
onstru
tion also shows how the other elements from the B-subdi�erential 
an beobtained. In the di�erentiable 
ase, our element is simply the Ja
obian of G at w.To this end, we introdu
e an a
tive set strategy. As already mentioned, the ve
tors ξmin and
c̄ ea
h 
ontain |Ωh| · Jmin 
omponents (and the ve
tor ξmob 
ontains |Ωh| · Jmob 
omponents),where |Ωh| is the number of grid points. We partition the set {1, . . . , Jmin} × Ωh into

A =
{

(i, x) ∈ {1, . . . , Jmin} × Ωh | Ẽi (ξmin (x) , ξmob (x)) > c̄i (x)
}

,(26)
I =

{

(i, x) ∈ {1, . . . , Jmin} × Ωh | Ẽi (ξmin (x) , ξmob (x)) ≤ c̄i (x)
}

.(27)Note that this partition is somewhat arti�
ial. Alternatively, we 
ould have de�ned the sets
A and I in a di�erent way by putting all index pairs satisfying Ẽi (ξmin (x) , ξmob (x)) > c̄i (x)as well as an arbitrary subset of the index pairs satisfying Ẽi (ξmin (x) , ξmob (x)) = c̄i (x) intothe set A, whereas the remaining index pairs belong to the index set I. We will 
ome ba
k tothis point at a later stage. For the moment, we use the two parti
ular index sets A and I asde�ned in our previous formula. In 
ontrast to the more general 
ase, this simpli�es to someextent our notation; moreover, it 
orresponds to our a
tual implementation of the nonsmoothNewton-type method.For reasons that will be
ome 
lear soon, the set A will be 
alled the set of a
tive indi
es,whereas its 
omplement I will be 
alled the set of ina
tive indi
es. We emphasize that thispartitioning into a
tive and ina
tive indi
es has to be 
omputed in ea
h Newton step, sin
e
ξmin, ξmob and c̄ 
hange in ea
h Newton iteration. Restri
ted to one spe
ies i, we 
an de�ne theset of a
tive and ina
tive indi
es as

Ai = {x ∈ Ωh | (i, x) ∈ A} ,

Ii = {x ∈ Ωh | (i, x) ∈ I}for i = 1, . . . , Jmin. With these sets, we have
ϕ
(

Ẽi (ξmin (x) , ξmob (x)) , c̄i (x)
)

=

{

c̄i (x) , for x ∈ Ai ,

Ẽi (ξmin (x) , ξmob (x)) , forx ∈ Ii .
(28)For an index (i, x) ∈ I with Ẽi (ξmin(x), ξmob(x)) = c̄i(x), the fun
tion ϕ

(

Ẽi (·, ·) , ·
) is notdi�erentiable. As a repla
ement for the Ja
obian, we take an element of its B-subdi�erential,namely

(

∂Ẽi (ξmin (x) , ξmob (x))

∂ξmin

,
∂Ẽi (ξmin (x) , ξmob (x))

∂ξmob

, 0

)(whi
h is 
onsistent with the previous de�nition of the a
tive and ina
tive index sets, 
f. (28)).For the indi
es in A, we always have the di�erentiable 
ase due to the de�nition of this indexset. Due to Lemma 1, it follows that this parti
ular element belongs to the B-subdi�erential



11of G at w. In our subsequent analysis, we will mainly work with this parti
ular element from
∂BG(w) and therefore 
all it J . In parti
ular, we 
onsider the nonsmooth Newton iteration in(25) using this parti
ular element J rather than an arbitrary element H ∈ ∂BG(w).We now want to exploit the spe
ial stru
ture of the parti
ular matrix J in order to de
omposethe linear system (25). To this end, we reorder the entries of ξmin and c̄ in the following way

ξmin =

(
ξAmin

ξImin

)

, c̄ =

(
c̄A

c̄I

)

.We apply the same reordering to our fun
tion G. Additionally, we reorder the rows of G1 and
G2. Altogether, this 
orresponds to reordering the rows and 
olumns of J . We perform thefollowing de
ompositions:

G1 =

(
GA

1

GI
1

)

, Lh =

(
LA

h

LI
h

)

, Ẽ =

(
ẼA

ẼI

)

, S1
min =

(
S1

min,A | S
1
min,I

)
,et
. Similar to the partition of ξmin, we split the dis
rete di�erential operator Lh in

LA
h ξmin := LA,A

h ξAmin + LA,I
h ξImin ,

LI
hξmin := LI,A

h ξAmin + LI,I
h ξImin .With this restru
turing, the linear system (25) reads(29) J









∆ξAmin

∆ξImin

∆ξmob

∆c̄A

∆c̄I









= −









GA
1

GI
1

−c̄A

−ẼI

G3









,with
(30) J =












(

θI|A| + τLA,A
h

)

τLA,I
h 0 I|A| 0

τLI,A
h

(

θI|I| + τLI,I
h

)

0 0 I|I|

0 0 0 −I|A| 0

− ∂ẼI

∂ξAmin

− ∂ẼI

∂ξImin

− ∂ẼI

∂ξmob
0 0

∂Q̃mob

∂ξAmin

∂Q̃mob

∂ξImin

∂Q̃mob

∂ξmob
0 0












.

From the third set of equations, we immediately obtain(31) −∆c̄A = c̄A .There is no need to 
ompute ∆c̄A, be
ause of (31) we 
an simply set the new Newton iterateas
c̄A,new := 0



12(this explains why A is 
alled the a
tive set). Furthermore, the unknowns ∆c̄I only appear inthe se
ond set of equations. These equations 
an be solved for ∆c̄I :
∆c̄I = −GI

1 − τLI,A
h ·∆ξAmin −

(

θI|I| + τLI,I
h

)

·∆ξImin .By these equations, ∆c̄I 
an be 
omputed a posteriori. After these two redu
tions, the resultingsystem reads
J̃





∆ξAmin

∆ξImin

∆ξmob



 = −





GA
1 − c̄A

− ẼI

G3



(32)with(33) J̃ :=







(

θI|A| + τLA,A
h

)

τLA,I
h 0

− ∂ẼI

∂ξAmin

− ∂ẼI

∂ξImin

− ∂ẼI

∂ξmob

∂Q̃mob

∂ξAmin

∂Q̃mob

∂ξImin

∂Q̃mob

∂ξmob







.This linear system is smaller than the original linear system (29), and it is solvable if and only if(29) is solvable. More pre
isely, the absolute values of the determinants of J and J̃ 
oin
ide. Tosee this, note that, by using elementary row and 
olumn additions as well as row inter
hanges,we 
an transform J into
J1 :=











0 0 0 0 I|I|
0 0 0 −I|A| 0

(

θI|A| + τLA,A
h

)

τLA,I
h 0 0 0

− ∂ẼI

∂ξAmin

− ∂ẼI

∂ξImin

− ∂ẼI

∂ξmob
0 0

∂Q̃mob

∂ξAmin

∂Q̃mob

∂ξImin

∂Q̃mob

∂ξmob
0 0











.Of 
ourse, J1 is nonsingular if and only if J is nonsingular, and their determinants are the sameex
ept for possibly the fa
tor −1. The same holds for J1 and J̃ , be
ause J1 results from J̃ byerasing the �rst rows and last 
olumns, whi
h belong to the blo
k with the unity matrix andthe negative unity matrix. Altogether, it follows that(34) det J = ± det J̃ .In the following se
tion, we will show that this determinant is nonzero.6. Convergen
e of the Newton-type AlgorithmNow we want to study the nonsingularity of the matrix J̃ from the previous se
tion (atthe arbitrary point w 
onsidered so far whi
h is not ne
essarily assumed to be a solution ofour problem). The nonsingularity of the matrix J and therefore of J̃ was �rst shown in [10,Se
tion 4.4.5℄ even in a more general setting. The proof given here, however, is di�erent and thestatement is stronger. The nonsingularity of this matrix is essential both for the solvability ofthe linear system (32) and for the lo
al rate of 
onvergen
e of our nonsmooth Newton method.



13First, let us examine the submatrix
B :=




−∂ẼI(ξmin,ξmob)

∂ξImin

−∂ẼI(ξmin,ξmob)
∂ξmob

∂Q̃mob(ξmin,ξmob)

∂ξImin

∂Q̃mob(ξmin,ξmob)
∂ξmob



of the matrix J . The nonsingularity of this matrix is shown even more generally in [10, Se
tion4.4.5℄. Note that every entry of B is a blo
k diagonal matrix. For example,
∂Q̃mob (ξmin, ξmob)

∂ξImin

= diag

(

∂Q̃mob (ξmin (x1) , ξmob (x1))

∂ξImin

, . . . ,
∂Q̃mob (ξmin (xp) , ξmob (xp))

∂ξImin

)

,with p = |Ωh|. By 
olumn and row inter
hanges, we 
an transform B into a blo
k diagonalmatrix, further denoted by C, so that every blo
k 
orresponds to one grid point x ∈ Ωh andhas the form
B̃ =




−∂ẼI(ξmin(x),ξmob(x))

∂ξImin

−∂ẼI(ξmin(x),ξmob(x))
∂ξmob

∂Q̃mob(ξmin(x),ξmob(x))

∂ξImin

∂Q̃mob(ξmin(x),ξmob(x))
∂ξmob



 .With the de�nitions from Se
tion 2 and the representation (20) of c, we 
an easily see that
B̃ =

(
S1

min,I | S
1
mob

)T
Λc

(
S1

min,I | S
1
mob

)holds, where Λc = diag
(

1
c1

, . . . , 1
cI

). Sin
e we postulated that all ci should be positive onthe whole domain Ωh, the blo
k B̃ is always symmetri
 positive de�nite in view of our rank
ondition (3). Therefore, C is symmetri
 positive de�nite. In parti
ular, C is nonsingular.Sin
e 
olumn and row inter
hanges do not 
hange the rank of a matrix, it follows that B is alsononsingular. To prove the nonsingularity of the global matrix J̃ we deviate from the strategyused in [10℄.The 
olumns of B form a basis of its 
olumn spa
e. Consequently, there exist unique matri
es
D1 and D2 su
h that




−∂ẼI(ξmin,ξmob)

∂ξImin

∂Q̃mob(ξmin,ξmob)

∂ξImin



D1 +

(

−∂ẼI(ξmin,ξmob)
∂ξmob

∂Q̃mob(ξmin,ξmob)
∂ξmob

)

D2 = −




−∂ẼI(ξmin,ξmob)

∂ξAmin

∂Q̃mob(ξmin,ξmob)

∂ξAmin



or, equivalently,
B ·

(
D1

D2

)

= −




−∂ẼI(ξmin,ξmob)

∂ξAmin

∂Q̃mob(ξmin,ξmob)

∂ξAmin



 .Next we post-multiply J̃ in (33) with the blo
k matrix
X :=





I 0 0
D1 I 0
D2 0 I







14from the right hand side and obtain
J̃1 := J̃ ·X =







θI|A| + τLA,A
h + τLA,I

h ·D1 τLA,I
h 0

0 − ∂ẼI(ξmin,ξmob)

∂ξImin

−∂ẼI(ξmin,ξmob)
∂ξmob

0 ∂Q̃mob(ξmin,ξmob)

∂ξImin

∂Q̃mob(ξmin,ξmob)
∂ξmob







.Sin
e the determinant of X is obviously 1, it follows that
det J̃ = det J̃1 .On the other hand, the determinant of J̃1 is given by

det
(
J̃1

)
= det

(

θI|A| + τLA,A
h + τLA,I

h ·D1

)

· det B.Therefore, in view of the previous dis
ussion, J̃1 is nonsingular if and only if H := θI|A| +

τLA,A
h + τLA,I

h ·D1 is nonsingular.Now we apply Lemma 2 from the appendix to the matrix H and obtain
det H =

∑

β

det θIβ,β · det
(

τLA,A
h + τLA,I

h ·D1

)

β̄,β̄
,where β ⊂ {1, . . . , |A|} and β̄ := {1, . . . , |A|}\β. The matri
es θIβ,β and (τLA,A

h + τLA,I
h ·D1

)

β̄,β̄are submatri
es of θI|A| resp. (τLA,A
h + τLA,I

h ·D1

). Sin
e the determinant of a 0 × 0 matrixis de�ned as 1, we get
det H =

∑

β

θ|β| · det
(

τLA,A
h + τLA,I

h ·D1

)

β̄,β̄

= θ|A| +
∑

|β|<|A|

θ|β| · τ |β̄| det
(

LA,A
h + LA,I

h ·D1

)

β̄,β̄
.For the next theorem, we assume that Lh is an arbitrary dis
retization of the PDE operator L.This dis
retization might depend on h but not on τ . Furthermore, we assume that the spatialstep size h is given and �xed. Then our theorem states the dependen
e of the nonsingularityof J on the time step size τ .Theorem 1. For su�
iently small time steps τ , the system matrix J is nonsingular. Further-more, there are at most Jmin · |Ωh| time steps τ su
h that J is singular.Proof. Note that the determinant of H is a polynomial in τ . The degree of this polynomial is

|A|, where |A| ≤ Jmin · |Ωh| always holds by de�nition of the a
tive set A. So this polynomialhas a maximum degree of Jmin · |Ωh|. It is not the zero polynomial sin
e it has θ|A| as 
onstantterm. So Jmin ·|Ωh| is also the maximum number of its roots. Hen
e either all roots are 
omplex,or there exists a smallest positive root whi
h is our smallest time step. Sin
e det B 6= 0 alwaysholds, and sin
e we have det J̃1 = det J̃ = ± det J a

ording to (34), the statement follows. �



15Additionally, we now assume that our PDE operator Lh emerged from a di�eren
e s
heme of�rst or se
ond order. In fa
t, the subsequent dis
ussion would hold for any PDE operatorthat 
ontains 1
h
in every nonvanishing entry. The variable h is the spatial grid width of ourdis
retization. Hen
e every entry of Lh that does not vanish 
ontains the fa
tor 1

h
. We therefore
on
lude that every non-vanishing entry of LA,A

h +LA,I
h ·D1 
ontains the fa
tor 1

h
(some entriesmay 
ontain 1

h2 ). Hen
e, for every index subset δ, there exists a matrix Lδ su
h that
(

LA,A
h + LA,I

h ·D1

)

δ,δ
=

1

h
· Lδholds.In 
ontrast to the previous theorem, we study in our next result the 
orrelation of thenonsingularity of J for variable spa
e step size h, while we assume that the time step size τ isgiven and �xed.Theorem 2. Let the PDE operator Lh result from a di�eren
e s
heme of �rst or se
ond order.Then the system matrix J is nonsingular for all su�
iently small spa
e steps h. Furthermore,there are at most 2 · Jmin · |Ωh| spa
e steps h su
h that J is singular.Proof. Every non-vanishing entry of Lh is a polynomial in 1
h
of �rst or se
ond order. The sameholds for LA,A

h + LA,I
h ·D1 and all its submatri
es. With the Leibniz formula, we 
on
lude that

det
(

LA,A
h + LA,I

h ·D1

)

β̄,β̄
is a polynomial in 1

h
of maximal degree 2 · |A| with a zero 
onstantterm. Therefore, det H is always a polynomial in 1

h
of degree at most 2 · Jmin · |Ωh|. Again, θ|A|is the 
onstant term of this polynomial, hen
e it is not the zero polynomial. Therefore it hasat most 2 · Jmin · |Ωh| roots.Let z∞ be the largest real root of this polynomial. Then there exists a 
orresponding smallestpositive spa
e step h0 with z∞ = 1

h0
. So det H 6= 0 holds for all h ∈ (0, h0). Sin
e det B 6=

0 always holds, and be
ause det J̃1 = det J̃ = ± det J , a

ording to (34), we have provedeverything. �We now generalize the previous two theorems slightly.Corollary 2. Let w∗ := (ξ∗min, ξ
∗
mob, c̄

∗) ∈ R
Jmin·|Ωh| × R

Jmob·|Ωh| × R
Jmin·|Ωh|
+ be a grid ve
tor.Then the following statements hold:(1) Let h be given. Then all H ∈ ∂BG (w∗) are nonsingular for all su�
iently small timesteps τ . Furthermore, there is only a �nite number of time steps τ su
h that at leastone element in ∂BG (w∗) is singular.(2) Let τ be given and let Lh be as in Theorem 2. Then all H ∈ ∂BG (w∗) are nonsingularfor all su�
iently small spa
e steps h. Furthermore, there are only a �nite number ofspa
e steps h su
h that at least one element in ∂BG (w∗) is singular.Proof. So far, we have shown the two statements for the parti
ular element J from the B-subdi�erential. However, as outlined after the de�nitions of the a
tive and ina
tive index sets

A and I in (26) and (27), respe
tively, the other elements from ∂BG(w∗) 
an be obtained bya minor 
hange of these de�nitions where, basi
ally, some of the index pairs from I are moved



16to the index set A. The nonsingularity of the 
orresponding element 
an then be shown inessentially the same way as we proved the nonsingularity of the parti
ular element J . Hen
ethe desired statements follow from Theorems 1 and 2, respe
tively, taking into a

ount thatthe number of matri
es in ∂BG (w∗) is �nite, 
f. Lemma 1. �Note that all the previous nonsingularity results hold at an arbitrary point w (or w∗). Hen
eall iterations of our Newton-type method are (not only lo
ally) well-de�ned. But it should bementioned that the minimal time step size in two di�erent grid points may di�er. So this value
ould de
rease 
onstantly during a Newton iteration.We next give an exa
t statement of our Newton-type method for the solution of the nonlinearsystem of equations from (29).Algorithm 1. (Nonsmooth Newton Method)(S.0) Let w0 ∈ R
Jmin·|Ωh| ×R

Jmob·|Ωh| ×R
Jmin·|Ωh|, and set k := 0.(S.1) If G

(
wk
)

= 0, stop.(S.2) Let Jk ∈ ∂BG
(
wk
) be the element de�ned in Se
tion 5. Find a solution dk of the linearsystem

Jkd = −G
(
wk
)

.(S.3) Set wk+1 := wk + dk , k ← k + 1, and go to (S.1).The following is the main lo
al 
onvergen
e result for this Newton-type method.Theorem 3. Let w∗ := (ξ∗min, ξ
∗
mob, c̄

∗) ∈ R
Jmin·|Ωh| × R

Jmob·|Ωh| × R
Jmin·|Ωh| be a grid ve
torsu
h that w∗ is a solution of the nonlinear system G (w) = 0 and H is nonsingular for all

H ∈ ∂BG (w∗). Then there exists an ǫ > 0 su
h that for every starting point w0 ∈ Bǫ (w∗), thefollowing assertions hold:(1) The Newton-type iteration de�ned in Algorithm 1 is well-de�ned and produ
es a sequen
e
{
wk
} that 
onverges to w∗.(2) The rate of 
onvergen
e is quadrati
.Proof. The assertion follows from [15℄ as soon as we have shown that the equation operator Gis a strongly semismooth fun
tion, see [6, 7, 16, 14℄ and referen
es therein for further details on(strongly) semismooth fun
tions. We apply several known results from these papers in orderto verify the strong semismoothness of G.First note that the strong semismoothness of G is equivalent to the strong semismoothness ofall 
omponent fun
tions of G. Now, the fun
tions Ej , Qmob , G1 and the linear transformations

(ξmin, ξmob, η) 7→ c (ξmin, ξmob, η) are 
ontinuous di�erentiable with derivatives that are lo
allyLips
hitz-
ontinuous on their domains. Therefore, these fun
tions are strongly semismootha

ording to [7℄. Moreover, the minimum fun
tion is known to be strongly semismooth, andthe 
omposition of strongly semismooth fun
tions is again strongly semismooth. Hen
e alsothe remaining 
omponents of the mapping G are strongly semismooth. �Unfortunately, we do not know a priori whether the requirement of Theorem 3 regarding thenonsingularity of all elements from the B-subdi�erential of G holds. However, Corollary 2guarantees that it is at least very unlikely to hit a point where this requirement is not satis�ed.



17Moreover, it shows that we 
an 
hange this situation by 
hanging the time step size τ or thespatial step size h (for pra
ti
al reasons, it is easier to 
hange τ). But after 
hanging the timestep size τ , the Newton iteration has to be restarted. So the previous statement is of moretheoreti
 nature, be
ause is is unlikely to stumble a
ross the same iterate with this 
hangedtime step size. In our 
omputational test runs, we never had problems with singular matri
esfrom ∂BG. 7. S
hur Complement Approa
hIn this se
tion, we want to dis
uss how the linear system (32) 
an be transformed in su
h away that it 
an be solved more e�
iently. To this end, we utilize a S
hur 
omplement approa
h.We begin by introdu
ing some abbreviations to keep the formulas 
lear:
A :=

(

θI|A| + τLA,A
h

)

, B := [B1 | 0] :=
[

τLA,I
h | 0

]

,

C :=

[
C1

C2

]

:=

[

− ∂ẼI

∂ξAmin

∂Q̃mob

∂ξAmin

]

, D :=

[
D11 D12

D21 D22

]

:=

[

− ∂ẼI

∂ξImin

− ∂ẼI

∂ξmob

∂Q̃mob

∂ξImin

∂Q̃mob

∂ξmob

]

.With these abbreviations, (32) reads
[

A B
C D

]

·





∆ξAmin

∆ξImin

∆ξmob



 = −





GA
1 − c̄A

−ẼI

G3



 .We begin by writing this linear system in detail
A ·∆ξAmin + B1 ·∆ξImin = −GA

1 + c̄A ,(35)
C1 ·∆ξAmin + D11 ·∆ξImin + D12 ·∆ξmob = ẼI ,(36)
C2 ·∆ξAmin + D21 ·∆ξImin + D22 ·∆ξmob = −G3 .(37)Similar to the previous se
tion, D11 is a blo
k diagonal matrix, where ea
h blo
k has the form

(
S1

min,I

)T
Λc

(
S1

min,I

). Likewise, D22 is a blo
k diagonal matrix, where ea
h blo
k has the form
(S1

mob)
T

Λc (S1
mob). Re
all that S1

min,I and S1
mob have full 
olumn rank, Λc = diag

(
1
c1

, 1
c2

, . . . , 1
cI

),and that all ci are assumed to be positive. Hen
e D11 and D22 are positive de�nite and thereforenonsingular.We now rewrite (36) to obtain(38) D11 ·∆ξImin = ẼI −D12 ·∆ξmob − C1 ·∆ξAmin .Furthermore, we transform (37) into(39) ∆ξmob = − (D22)
−1 ·G3 − (D22)

−1 · C2 ·∆ξAmin − (D22)
−1 ·D21 ·∆ξImin .Now we insert ∆ξmob into (38) and obtain(40) ∆ξImin = D̃−1ẼI + D̃−1D12D

−1
22 ·G3 − D̃−1

(
C1 −D12 ·D

−1
22 · C2

)
·∆ξAmin



18with D̃ =
(
D11 −D12D

−1
22 D21

). D̃ 
an be obtained from D through a blo
k Gauss eliminationstep. It is a S
hur 
omplement of D. Sin
e D is positive de�nite, D̃ is also positive de�nite, 
f.[19℄. In parti
ular, D̃ is nonsingular.Finally, we insert ∆ξImin in (35) and obtain(41) [

A− B1 · D̃
−1C̃

]

·∆ξAmin = −GA
1 + c̄A − B1D̃

−1ẼI −B1D̃
−1D12 ·D

−1
22 ·G3,with C̃ =

(
C1 −D12D

−1
22 C2

).To obtain the solution of the initial linear system (35)�(37), we �rst solve (41) for ∆ξAmin.Subsequently, we 
ompute ∆ξImin from (40) whi
h essentially requires some matrix-ve
tor mul-tipli
ations. Finally, we get ∆ξmob from (39) again by matrix-ve
tor multipli
ations and addi-tions.The main 
omputational 
ost is, on the one hand, in solving the linear system (41) and, onthe other hand, in the 
omputation of the inverses needed in (39)-(41).We now want to take a 
loser look at the 
omputation of the required inverses. To be morepre
ise, we do not really need the inverses themselves, but we need their e�e
t on severalmatri
es resp. ve
tors. For the purpose of 
larifying the 
omputational 
ost, we introdu
ethe variables X1, X2, x3, Y1, y2, y3, z3, whi
h we de�ne subsequently. Now we re
apitulate thetransformation.First we solve the linear system
D22 · [X1 | X2 | x3] = [D21 | C2 | G3] .The matri
es D22, D21 as well as C2 are blo
k diagonal matri
es. The dimensions of the blo
ks ofall three matri
es mat
h up in a way that this linear system 
an be broken down in |Ωh| totallyindependent linear systems of size Jmob × Jmob. We already mentioned that all the blo
ks of

D22 are positive de�nite. So we 
an solve these small systems by the Cholesky de
omposition.Note that all of these have multiple right hand sides. However, this does not in
rease the
omputational 
ost signi�
antly, sin
e we need only one de
omposition. The resulting matri
es
X1 and X2 are again blo
k diagonal matri
es.Now we 
ompute

D̃ = D11 −D12 ·X1 , C̃ = C1 −D12 ·X2 , z3 := D12 · x3.Again this 
an be done blo
k-wise. Therefore, D̃ and C̃ have blo
k diagonal form, too.Next we solve the linear system̃
D · [Y1 | y2 | y3] =

[

C̃ | z3 | ẼI

]

.For this system, the same applies as for the previous one. Here C̃ and D̃ have a mat
hing blo
kdiagonal form. Therefore, Y1 is a blo
k diagonal matrix, whereas z3, ẼI are just ve
tors. Again,the small systems have multiple right-hand sides. This time, however, the square blo
ks of D̃have variable sizes from 0× 0 to Jmin × Jmin.



19Using this notation, our transformed system reads
[A−B1 · Y1] ·∆ξAmin = −GA

1 + c̄A −B1 · [y2 + y3](42)
∆ξImin = y2 + y3 − Y1 ·∆ξAmin(43)
∆ξmob = −x3 −X1 ·∆ξImin −X2 ·∆ξAmin .(44)Through this transformation of the original system (32), we 
ould exploit espe
ially the stru
-ture of D and its submatri
es, whi
h would have been unused otherwise.Sin
e B1 is sparse and Y1 is blo
k diagonal, the produ
t B1 · Y1 again is sparse. Its stru
tureis similar to the stru
ture of A. Therefore, the matrix A− B1 · Y1 in the linear system (42) issparse, too. It 
an be solved by a linear solver like GMRES.Finally, it should be mentioned that we really have only one Newton-type algorithm andthat is the one whi
h was introdu
ed in Algorithm 1. The S
hur-
omplement approa
h andthe simpli�
ations in (32) and (33) are only di�erent ways to solve the resulting linear systemse�
iently. 8. Numeri
al ExampleThe rea
tive transport problem introdu
ed in Se
tion 2 was implemented in two versionsusing MATLAB R©. One version uses the S
hur-
omplement approa
h from Se
tion 7, whereasthe other version utilizes the whole system (25) with the spe
ial element J ∈ ∂BG.For both versions, the dis
retization of the PDE-operator was done via the same di�eren
es
heme of se
ond order. Both versions have to solve the same a priori linear de
oupled system,the dis
retization of (16). This is done through a GMRES iteration in both implementations,sin
e it is a sparse system. In pra
ti
e, this seems to work very well for this parti
ular linearsystem. Usually only 2 or 3 steps are needed to 
al
ulate a su�
iently a

urate solution. Thuswe will fo
us on the Newton iteration.In our test example (taken from [10℄), the intera
tion of CO2 with minerals is 
onsidered. Inthese days, we are fa
ing the global warming of the earth whi
h is at least partly due to theCO2-
on
entration in the atmosphere. Therefore, te
hniques have been investigated to inje
tCO2 into the subsurfa
e. The long term storage of CO2 beneath the surfa
e of our planet isthe desired goal. This might be more likely if the 
arbon pre
ipitates would form minerals thanthe 
arbon being dissolved in the ground water.We use the following generi
 simpli�ed set of 
hemi
al rea
tions to model the desired me
h-anism: CO(aq)
2 + H2O R1←→ HCO−

3 + H+Cal
ite+ H+ R2←→ Ca2+ + HCO−
3Min A + 3H+ R3←→ Me3+ + SiO(aq)

2Min B + 2H+ R4←→ Me3+ + HCO−
3It 
onsists of 3 minerals (
al
ite and mineral B are 
arbonates, mineral A is a sili
ate) and6 spe
ies whi
h are dissolved in the ground water and one aqueous tra
er. More details and



20insights for this example, espe
ially its internal fun
tionality, 
an be found in [10, Subse
tion4.5.2℄.The te
hni
al details for this example are: domain Ω = (0, 10) × (0, 6), Dar
y velo
-ity q = (0.015, 0)T , water 
ontent θ = 0.3, (i.e. pore velo
ity ‖q‖ /θ = 0.05), longitudi-nal/transversal dispersion length (βl, βt)
T = (0.3, 0.03)T , time step size τ = 0.1. The equi-librium 
onstant of the �rst rea
tion is K1 = 0.1, where the a
tivity of H2O is already in
or-porated; i.e. cH+cHCO−

e
/cCO2

= 0.1. The solubility produ
ts of the three mineral rea
tionsare K2 = 100, K3 = 10, K4 = 1.25; i.e. cCa2+cHCO−

3
/cH+ = 100 (if cCalcite > 0), et
. Theinitial values are cCO2

= cHCO−

3
= cSiCO2

= 1, cH+ = 0.1, cMe3+ = 0.01, cCa2+ = 10 (
onstantwithin Ω), and cA = 0.2 for x ≥ 6, cCalcite = 0.2 for 1 < x < 6, and zero else. The Diri
h-let boundary values for the mobile spe
ies are cCO2
= 3.787, cH+ = 0.3124 , cHCO−

3
= 1.212,

cMe3+ = 0.01, cSiO2
= 1, cCa2+ = 10 on {0} × [1.5, 4.5], whereas we use the initial values on

(0, y) with y < 1.5, y > 4.5. For the other three borders, the homogeneous Neumann boundary
ondition is given.In the following 
al
ulation, we set the spatial and the time step to h = τ = 0.1. With thissetting, we get 6100 grid nodes for an equidistant quadrati
 grid. The dis
retization was donevia a se
ond-order �nite di�eren
e method. With the S
hur 
omplement implementation we
al
ulate the resulting 
on
entrations for the 10 spe
ies for 3600 time steps, i.e. a time span of
360 se
onds. The results have been 
he
ked to mat
h the results from [10℄.Figures 1�3 visualize the numeri
al results. Note that the di�eren
es to the results given in[10℄ are only due to a di�erent 
olor s
aling. There is a slow water �ow in horizontal dire
tionfrom the left to the right. With it enters dissolved CO2 into the 
omputational domain. Thisde
reases the pH value (the negative 
ommon logarithm of the 
on
entration of H+ ions in thewater). The water stream of low pH value dissolves Mineral A and Cal
ite, when it rea
hesthose areas. Moreover, the dissolution of Mineral A leads to an immediate pre
ipitation ofMineral B.Table 1 shows the quadrati
 
onvergen
e for both implementations of our Newton-type meth-ods as predi
ted in the previous theory. The third 
olumn 
ontains the errors of the S
hur
omplement method, whereas the fourth 
olumn gives the errors of the full Ja
obian method.The good 
onsisten
y of these errors shows that these two methods realize the same Newtonmethod where only the linear systems are solved di�erently. Usually these two methods needthe same number of Newton iterations to get below the termination 
ondition of 2 · 10−6. Withtime step size τ = 0.1, they both need almost always only two Newton iterations after about
10 time iterations.In Table 2 we 
ompare the linear systems whi
h arise in these two methods. Both of thesesparse systems are solved with the GMRES(30) method. The numbers in the last two 
olumnsshow the total number of inner GMRES iterations whi
h are needed in both methods. The�fth and sixth 
olumns display the 
ondition numbers of the linear systems of both methods.Finally, we present in the third and fourth 
olumns the dimensions of these linear systems.Of 
ourse, the linear system of the full Ja
obian method has always the same size, sin
e thearising Ja
obians always stem from the same fun
tion. While the linear system of the S
hur
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t = 0.4CO2 Mineral A

H+ Cal
ite
HCO−

3 Mineral B
t = 40CO2 Mineral A

H+ Cal
ite
HCO−

3 Mineral B
Figure 1. Results obtained after t = 0.4 se
onds. (The graphi
s are 
om-pressed by a fa
tor 1.5 in verti
al dire
tion.)
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t = 120CO2 Mineral A

H+ Cal
ite
HCO−

3 Mineral B
t = 200CO2 Mineral A

H+ Cal
ite
HCO−

3 Mineral B
Figure 2. Results obtained after t = 120 se
onds. (The graphi
s are 
om-pressed by a fa
tor 1.5 in verti
al dire
tion.)
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t = 280CO2 Mineral A

H+ Cal
ite
HCO−

3 Mineral B
t = 360CO2 Mineral A

H+ Cal
ite
HCO−

3 Mineral B
Figure 3. Results obtained after t = 280 se
onds. (The graphi
s are 
om-pressed by a fa
tor 1.5 in verti
al dire
tion.)



24time step iteration method S
hur:‖G (z)‖2 method full:‖G (z)‖2
1 0 3.1753 · 100 3.1753 · 1001 2.7353 · 100 2.3026 · 10−12 1.6990 · 10−2 6.2355 · 10−33 2.9673 · 10−3 2.3402 · 10−64 5.2980 · 10−7 3.9298 · 10−9

2 0 1.8504 · 100 1.8504 · 1001 3.3186 · 10−2 3.3186 · 10−22 6.9773 · 10−4 6.9771 · 10−43 2.9498 · 10−8 4.2795 · 10−8

3 0 1.4602 · 100 1.4602 · 1001 2.1604 · 10−2 2.1604 · 10−22 1.0084 · 10−4 1.0084 · 10−43 5.9014 · 10−10 4.4814 · 10−9

8 0 8.1019 · 10−1 8.1019 · 10−11 5.4402 · 10−3 5.4403 · 10−32 1.1288 · 10−6 1.1334 · 10−63 7.4144 · 10−14 1.4089 · 10−9

18 0 5.0502 · 10−1 5.0502 · 10−11 1.7743 · 10−3 1.7743 · 10−32 1.0200 · 10−7 3.0794 · 10−7Table 1. Comparison of errors
omplement approa
h is not the Ja
obian of G itself but only a reordered submatrix, whosesize depends on the size of the a
tive set.In this table, we have only listed three time steps sin
e the displayed tenden
ies alwaysremain un
hanged. The S
hur 
omplement linear system is almost always four times smallerthen the full Ja
obian linear system (in the number of rows and in the number of 
olumns).Furthermore, its 
ondition number is usually smaller than 3, while the 
ondition number of thefull Ja
obian is typi
ally more than 1000 times greater. The last two 
olumns show that thefull Ja
obian method needs mu
h more total GMRES iterations than the S
hur 
omplementmethod ex
ept for the �rst linear system in ea
h time step.9. Final RemarksWe have investigated and implemented a solution pro
edure for rea
tive transport problemsin
luding equilibrium mineral pre
ipitation-dissolution rea
tions. While 
urrently in the geo-s
ientists' 
ommunity often strategies whi
h are time 
onsuming [2, 3℄ or whi
h are of limitedpra
ti
al appli
ability [13℄ are used, our intention was to apply modern mathemati
al strategiesto this problem. We avoid operator splitting te
hniques be
ause of their well-known potentialdisadvantages. The PDE-ODE-AE-CC system is solved with the semismooth Newton method.We have shown that this semismooth Newton method is typi
ally quadrati
ally 
onvergent, and



25time step iteration size S
hur size full 
ond.S
hur 
ond. full S
hurGMResitera-tions fullGMResitera-tions
1 0 9628 42700 2.8497 3.9813 · 103 4 41 10070 42700 2.9073 3.9812 · 103 5 852 10116 42700 2.8551 4.0279 · 103 5 683 10161 42700 2.8551 3.9812 · 103 5 644 10167 2.8551 5
2 0 9670 42700 2.8497 3.9812 · 103 4 41 10142 42700 2.8554 4.0278 · 103 5 902 10180 42700 2.8554 3.9860 · 103 5 983 10180 42700 2.8554 4.0278 · 103 5 70
3 0 9677 42700 2.9272 4.0273 · 103 4 41 10156 42700 2.9549 4.0273 · 103 5 852 10200 42700 2.9549 4.0278 · 103 5 993 10200 42700 2.9549 4.0276 · 103 5 90Table 2. 
omparison of the arising linear systemshave 
on�rmed this by our numeri
al test runs. Compared to other solvers, our implementationkeeps the number of unknowns small, �rst by using the reformulation/de
oupling te
hnique ofSe
. 3, and se
ond by using a parti
ular S
hur 
omplement te
hnique whi
h exploits the spe
ialstru
ture of the resulting linear systems of equations.The geat redu
tion of the 
ondition number of the S
hur 
omplement approa
h 
ompared tothe full system is an interesting observation in our numeri
al test runs. A theoreti
al explanationis 
urrently under investigation. 10. AppendixThe following result was used in Se
tion 6. The result itself 
an be found in [5, p. 60℄ butwithout proof. Sin
e we are not aware of an expli
it referen
e 
ontaining the proof, we give thedetails here.Lemma 2. Let B, D ∈ R

n×n with D being a diagonal matrix, and let M = D + B. Then
det M =

∑

α⊂I

det Dα,α · det Bᾱ,ᾱ ,where I := {1, . . . , n}, ᾱ := I \ α denotes the 
omplement of α ⊂ I, and where the determinantof a 0× 0 matrix is 1.Proof. The proof is by indu
tion on n.



26Let n = 1. Then M, B, D are real numbers and the determinant is a linear mapping.Therefore it holds
det M = det D + det B = det D{1},{1} · det B∅,∅ + det D∅,∅ · det B{1},{1} .Now assume the statement holds for all matri
es of dimension n×n and let B, D ∈ R

(n+1)×(n+1)with D diagonal and M := D+B. Here we need some spe
i�
 notation. Let Bi := BJ,J with J =
{1, . . . , n + 1} \ {i}. This is the matrix that emerges from B by 
an
elling the i-th 
olumn androw. Let Mi be de�ned in an analogous way. Furthermore letDī := diag(0, . . . , 0

︸ ︷︷ ︸

i−1

, di+1, . . . , dn+1)be the matrix that evolves from D = diag(d1, d2, . . . , dn+1) by dis
arding the i-th row and
olumn and setting the �rst i − 1 diagonal entries to zero. With di and bi we denote the i-th 
olumn of D and B, respe
tively. Be
ause of the linearity of the determinant in the �rst
olumn, we then get
det M = det

[
d1 + b1, d2 + b2, . . . , dn+1 + bn+1

]

= det
[
d1, d2 + b2, . . . , dn+1 + bn+1

]
+ det

[
b1, d2 + b2, . . . , dn+1 + bn+1

]

= d1 · det M1 + det
[
b1, d2 + b2, . . . , dn+1 + bn+1

]
,where the last equation follows by expanding the determinant in the �rst 
olumn. We repeatthis pro
edure and get

det M = d1 · det M1 + det
[
b1, d2 + b2, . . . , dn+1 + bn+1

]

= d1 · det (D1̄ + B1) + d2 · det (D2̄ + B2)

+ det
[
b1, b2, d3 + b3, . . . , dn+1 + bn+1

]
.Now we iterate this and eventually get(45) det M =

n+1∑

i=1

di · det (Dī + Bi) + det B.Note that Dī and Bi are n×n matri
es. Hen
e we 
an apply the indu
tion hypothesis to obtain
di · det (Dī + Bi) = di ·

∑

α⊆{1,...,n}

det (Dī)α,α · det (Bi)ᾱ,ᾱ

= di ·
∑

α⊆{i,...,n}

det (Dī)α,α · det (Bi)ᾱ,ᾱ ,where the last equation holds be
ause of the de�nition of Dī. Now it is not di�
ult to see that,given any i ∈ {1, . . . , n + 1}, we have
di · det (Dī + Bi) =

∑

i∈α,α⊂{i,i+1,...,n+1}

det Dα,α · det Bᾱ,ᾱ ,sin
e i ∈ α guarantees, on the one hand, that di is always on the diagonal of Dα,α, and, on theother hand, that the index i does not belong to ᾱ so that we 
an repla
e Bi by B. Now we 
aninsert this result in (45) and get
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det M =

n+1∑

i=1




∑

i∈α,α⊂{i,i+1,...,n+1}

det Dα,α · det Bᾱ,ᾱ



+ det B .Now it holds that ∪n+1
i=1 {i ∈ α, α ⊂ {i, i + 1, . . . , n + 1}} equals the power set of {1, 2, . . . , n + 1}o� the empty set. Furthermore, for di�erent i, two sets {i ∈ α, α ⊂ {i, i + 1, . . . , n + 1}} donot have an interse
tion. Therefore α runs through every subset of {1, 2, . . . , n + 1} on
e ex
eptfor the empty set. But for the empty set, we have

det D∅,∅ · det B∅̄,∅̄ = det B .Hen
e we obtain
det M =

∑

α

det Dα,α · det Bᾱ,ᾱ,with α ⊂ {1, . . . , n + 1} and ᾱ := {1, . . . , n + 1}\α. That is exa
tly our assertion for n+1. �Referen
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